我想对图形的某些部分进行基准测试,为简单起见,这里我使用的只是[conv3x3]。conv_block
x_np
是否相同,还是每次都需要重新生成它?sess.run(tf.global_variables_initializer())
是否足够?示例代码:
import os
import time
import numpy as np
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
np.random.seed(2020)
def conv_block(x, kernel_size=3):
# Define some part of graph here
bs, h, w, c = x.shape
in_channels = c
out_channels = c
with tf.variable_scope('var_scope'):
w_0 = tf.get_variable('w_0', [kernel_size, kernel_size, in_channels, out_channels], initializer=tf.contrib.layers.xavier_initializer())
x = tf.nn.conv2d(x, w_0, [1, 1, 1, 1], 'SAME')
return x
def get_data_batch(spatial_size, n_channels):
bs = 1
h = spatial_size
w = spatial_size
c = n_channels
x_np = np.random.rand(bs, h, w, c)
x_np = x_np.astype(np.float32)
#print('x_np.shape', x_np.shape)
return x_np
def run_graph_part(f_name, spatial_size, n_channels, n_iter=100):
print('=' * 60)
print(f_name.__name__)
tf.reset_default_graph()
with tf.Session() as sess:
x_tf = tf.placeholder(tf.float32, [1, spatial_size, spatial_size, n_channels], name='input')
z_tf = f_name(x_tf)
sess.run(tf.global_variables_initializer())
x_np = get_data_batch(spatial_size, n_channels)
start_time = time.time()
for _ in range(n_iter):
z_np = sess.run(fetches=[z_tf], feed_dict={x_tf: x_np})[0]
avr_time = (time.time() - start_time) / n_iter
print('z_np.shape', z_np.shape)
print('avr_time', round(avr_time, 3))
n_total_params = 0
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='var_scope'):
n_total_params += np.prod(v.get_shape().as_list())
print('Number of parameters:', format(n_total_params, ',d'))
if __name__ == '__main__':
run_graph_part(conv_block, spatial_size=128, n_channels=32, n_iter=100)
我想对图的某些部分进行基准测试,为简单起见,这里我使用的只是conv3x3的conv_block。可以在循环中使用x_np相同吗,还是每次都需要重新生成它?我需要...
对您的主要问题的回答,'对张量流图的基准进行基准测试的正确方法是什么?: