不使用 Numpy 进行矩阵求逆

问题描述 投票:0回答:8

我想在不使用 numpy.linalg.inv 的情况下反转矩阵。

原因是我使用 Numba 来加速代码,但不支持 numpy.linalg.inv,所以我想知道是否可以使用“经典”Python 代码反转矩阵。

使用 numpy.linalg.inv 示例代码如下所示:

import numpy as np
M = np.array([[1,0,0],[0,1,0],[0,0,1]])
Minv = np.linalg.inv(M)
python matrix numba inverse
8个回答
85
投票

在我看来,这是一个更优雅和可扩展的解决方案。它适用于任何 nxn 矩阵,您可能会发现其他方法也有用。请注意, getMatrixInverse(m) 将数组数组作为输入。有任何问题请随时提问。

def transposeMatrix(m):
    return map(list,zip(*m))

def getMatrixMinor(m,i,j):
    return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]

def getMatrixDeternminant(m):
    #base case for 2x2 matrix
    if len(m) == 2:
        return m[0][0]*m[1][1]-m[0][1]*m[1][0]

    determinant = 0
    for c in range(len(m)):
        determinant += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))
    return determinant

def getMatrixInverse(m):
    determinant = getMatrixDeternminant(m)
    #special case for 2x2 matrix:
    if len(m) == 2:
        return [[m[1][1]/determinant, -1*m[0][1]/determinant],
                [-1*m[1][0]/determinant, m[0][0]/determinant]]

    #find matrix of cofactors
    cofactors = []
    for r in range(len(m)):
        cofactorRow = []
        for c in range(len(m)):
            minor = getMatrixMinor(m,r,c)
            cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
        cofactors.append(cofactorRow)
    cofactors = transposeMatrix(cofactors)
    for r in range(len(cofactors)):
        for c in range(len(cofactors)):
            cofactors[r][c] = cofactors[r][c]/determinant
    return cofactors

11
投票

这是另一种方法,使用高斯-乔丹消除法:

def eliminate(r1, r2, col, target=0):
    fac = (r2[col]-target) / r1[col]
    for i in range(len(r2)):
        r2[i] -= fac * r1[i]

def gauss(a):
    for i in range(len(a)):
        if a[i][i] == 0:
            for j in range(i+1, len(a)):
                if a[i][j] != 0:
                    a[i], a[j] = a[j], a[i]
                    break
            else:
                raise ValueError("Matrix is not invertible")
        for j in range(i+1, len(a)):
            eliminate(a[i], a[j], i)
    for i in range(len(a)-1, -1, -1):
        for j in range(i-1, -1, -1):
            eliminate(a[i], a[j], i)
    for i in range(len(a)):
        eliminate(a[i], a[i], i, target=1)
    return a

def inverse(a):
    tmp = [[] for _ in a]
    for i,row in enumerate(a):
        assert len(row) == len(a)
        tmp[i].extend(row + [0]*i + [1] + [0]*(len(a)-i-1))
    gauss(tmp)
    return [tmp[i][len(tmp[i])//2:] for i in range(len(tmp))]

9
投票

至少截至 2018 年 7 月 16 日,Numba 具有快速矩阵逆。 (您可以在此处了解它们如何重载标准 NumPy 逆运算和其他操作。)

以下是我的基准测试结果:

import numpy as np
from scipy import linalg as sla
from scipy import linalg as nla
import numba

def gen_ex(d0):
  x = np.random.randn(d0,d0)
  return x.T + x

@numba.jit
def inv_nla_jit(A):
  return np.linalg.inv(A)

@numba.jit
def inv_sla_jit(A):
  return sla.inv(A)

对于小矩阵,速度特别快:

ex1 = gen_ex(4)
%timeit inv_nla_jit(ex1) # NumPy + Numba
%timeit inv_sla_jit(ex1) # SciPy + Numba
%timeit nla.inv(ex1)     # NumPy
%timeit sla.inv(ex1)     # SciPy

[出]

2.54 µs ± 467 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
67.3 µs ± 9.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
63.5 µs ± 7.65 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
56.6 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

请注意,加速仅适用于 NumPy 逆函数,不适用于 SciPy(如预期)。

稍大的矩阵:

ex2 = gen_ex(40)
%timeit inv_nla_jit(ex2) # NumPy + Numba
%timeit inv_sla_jit(ex2) # SciPy + Numba
%timeit nla.inv(ex2)     # NumPy
%timeit sla.inv(ex2)     # SciPy

[出]

131 µs ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
278 µs ± 26.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
231 µs ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
189 µs ± 11.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

所以这里仍然有加速,但 SciPy 正在迎头赶上。


2
投票

对于 4 x 4 矩阵,使用数学公式可能就可以了,您可以使用谷歌搜索“4 x 4 矩阵逆矩阵的公式”找到该公式。例如这里(我不能保证其准确性):

http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html

一般来说,胆小的人不适合对一般矩阵求逆。您必须了解所有数学上困难的情况,并知道为什么它们不适用于您的使用,并在向您提供数学病态输入时捕获它们(或者返回低精度或数字垃圾的结果,因为您知道在您的使用案例中,只要您实际上最终没有除以零或溢出 MAXFLOAT ...您可能会用异常处理程序捕获并呈现为“错误:矩阵是奇异的或非常接近它”),那么这并不重要。

作为一名程序员,通常最好使用由数值数学专家编写的库代码,除非您愿意花时间了解您正在解决的特定问题的物理和数学本质,并成为您自己的专业领域的数学专家。


2
投票

我发现高斯乔丹消除算法在尝试这个时有很大帮助。如果您要使用给定的矩阵(任何大小,即 5x5),其核心公式有 49 页长。最好用这个。要反转矩阵,请将其放置为二维数组,然后运行反转函数

# Python test Guassion Jordan Elimination
# Inputs are 2D array not matrix

Test_Array = [[3,3,2,1,1],[2,1,3,2,3],[1,3,3,2,2],[2,3,3,1,1], 
[3,1,2,1,2]]

# Creating storage & initalizing for augmented matrix
# this is the same as the np.zeros((n,2*n)) function
def nx2n(n_Rows, n_Columns):
    Zeros = []
    for i in range(n_Rows):
        Zeros.append([])
        for j in range(n_Columns*2):
            Zeros[i].append(0)
    return Zeros

# Applying matrix coefficients
def update(inputs, n_Rows, n_Columns, Zero):
    for i in range(n_Rows):
        for j in range(n_Columns):
            Zero[i][j] = inputs[i][j]
    return Zero

# Augmenting Identity Matrix of Order n
def identity(n_Rows, n_Columns, Matrix):
    for i in range(n_Rows):
        for j in range(n_Columns):
            if i == j:
                Matrix[i][j+n_Columns] = 1
    return Matrix

# Applying & implementing the GJE algorithm
def Gussain_Jordan_Elimination(n_Rows, n_Columns, Matrix):
    for i in range(n_Rows):
        if Matrix[i][i] == 0:
            print('error cannot divide by "0"')
    
        for j in range(n_Columns):
            if i != j:
                ratio = Matrix[j][i]/Matrix[i][i]

                for k in range(2*n_Columns):
                    Matrix[j][k] = Matrix[j][k] - ratio * Matrix[i][k]
    return Matrix

# Row Operation to make Principal Diagonal Element to '1'
def row_op(n_Rows, n_Columns, Matrix):
    for i in range(n_Rows):
        divide = Matrix[i][i]
        for j in range(2*n_Columns):
            Matrix[i][j] = Matrix[i][j]/divide
    return Matrix

# Display Inversed Matix
def Inverse(Matrix):
    returnable = []
    number_Rows = int(len(Matrix))
    number_Columns = int(len(Matrix[0]))
    Inversed_Matrix = (row_op(number_Rows, number_Columns, 
        Gussain_Jordan_Elimination(number_Rows, number_Columns, 
        identity(number_Rows, number_Columns, 
        update(Matrix, number_Rows, number_Columns, 
        nx2n(number_Rows, number_Columns))))))

    for i in range(number_Rows):
        returnable.append([])
        for j in range(number_Columns, 2*number_Columns):
            returnable[i].append(Inversed_Matrix[i][j])
    return returnable

print(Inverse(Test_Array))

0
投票

只需添加所有方法

import math

def getMinorIndex(matrixLocal, x, y):
  minor = []
  for i in range(3):
    minorRow = []
    if i == x:
      continue
    for j in range(3):
      if j == y:
        continue
      minorRow.append(matrixLocal[i][j])
    minor.append(minorRow)
  return minor

def getDeterminant2By2(matrixLocal):
  determinant = matrixLocal[0][0] * matrixLocal[1][1] - matrixLocal[0][1] * matrixLocal[1][0]
  return determinant

def getDeterminant(matrixLocal):
  determinant = 0
  for x in range(3):
    t = getDeterminant2By2(getMinorIndex(matrixLocal, 0, x))
    e = matrixLocal[0][x]
    determinant += (t * e * math.pow(-1, x))
  return determinant

def getCofactorMatrix(matrixLocal):
  cofactorMatrix = []
  for i in range(3):
    row = []
    for j in range(3):
      e = matrixLocal[i][j]
      t = getDeterminant2By2(getMinorIndex(matrixLocal, i, j))
      row.append(t * math.pow(-1, i + j))
    cofactorMatrix.append(row)
  return cofactorMatrix

def transpose(matrixLocal):
  transposeMatrix = []
  for i in range(3):
    row = []
    for j in range(3):
      e = matrixLocal[j][i]
      row.append(e)
    transposeMatrix.append(row)
  return transposeMatrix

def divideMatrix(matrixLocal, divisor):
  ansMatrix = []
  for i in range(3):
    row = []
    for j in range(3):
      e = matrixLocal[i][j]/divisor
      row.append(e)
    ansMatrix.append(row)
  return ansMatrix

cofactor = getCofactorMatrix(matrix)
adjoint = transpose(cofactor)
det = getDeterminant(matrix)
inverse = divideMatrix(adjoint, det)
inverse

-1
投票

不使用 numpy 的 3x3 逆矩阵 [python3]

import pprint


def inverse_3X3_matrix():
    I_Q_list = [[0, 1, 1],
                [2, 3, -1],
                [-1, 2, 1]]
    det_ = I_Q_list[0][0] * (
            (I_Q_list[1][1] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][1])) - \
           I_Q_list[0][1] * (
                   (I_Q_list[1][0] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][0])) + \
           I_Q_list[0][2] * (
                   (I_Q_list[1][0] * I_Q_list[2][1]) - (I_Q_list[1][1] * I_Q_list[2][0]))
    co_fctr_1 = [(I_Q_list[1][1] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][1]),
                 -((I_Q_list[1][0] * I_Q_list[2][2]) - (I_Q_list[1][2] * I_Q_list[2][0])),
                 (I_Q_list[1][0] * I_Q_list[2][1]) - (I_Q_list[1][1] * I_Q_list[2][0])]

    co_fctr_2 = [-((I_Q_list[0][1] * I_Q_list[2][2]) - (I_Q_list[0][2] * I_Q_list[2][1])),
                 (I_Q_list[0][0] * I_Q_list[2][2]) - (I_Q_list[0][2] * I_Q_list[2][0]),
                 -((I_Q_list[0][0] * I_Q_list[2][1]) - (I_Q_list[0][1] * I_Q_list[2][0]))]

    co_fctr_3 = [(I_Q_list[0][1] * I_Q_list[1][2]) - (I_Q_list[0][2] * I_Q_list[1][1]),
                 -((I_Q_list[0][0] * I_Q_list[1][2]) - (I_Q_list[0][2] * I_Q_list[1][0])),
                 (I_Q_list[0][0] * I_Q_list[1][1]) - (I_Q_list[0][1] * I_Q_list[1][0])]

    inv_list = [[1 / det_ * (co_fctr_1[0]), 1 / det_ * (co_fctr_2[0]), 1 / det_ * (co_fctr_3[0])],
                [1 / det_ * (co_fctr_1[1]), 1 / det_ * (co_fctr_2[1]), 1 / det_ * (co_fctr_3[1])],
                [1 / det_ * (co_fctr_1[2]), 1 / det_ * (co_fctr_2[2]), 1 / det_ * (co_fctr_3[2])]]

    pprint.pprint(inv_list)


inverse_3X3_matrix()

-8
投票

我使用了 http://cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html 中的公式来编写执行 4x4 矩阵求逆的函数:

import numpy as np

def myInverse(A):
    detA = np.linalg.det(A)

    b00 = A[1,1]*A[2,2]*A[3,3] + A[1,2]*A[2,3]*A[3,1] + A[1,3]*A[2,1]*A[3,2] - A[1,1]*A[2,3]*A[3,2] - A[1,2]*A[2,1]*A[3,3] - A[1,3]*A[2,2]*A[3,1]
    b01 = A[0,1]*A[2,3]*A[3,2] + A[0,2]*A[2,1]*A[3,3] + A[0,3]*A[2,2]*A[3,1] - A[0,1]*A[2,2]*A[3,3] - A[0,2]*A[2,3]*A[3,1] - A[0,3]*A[2,1]*A[3,2]
    b02 = A[0,1]*A[1,2]*A[3,3] + A[0,2]*A[1,3]*A[3,1] + A[0,3]*A[1,1]*A[3,2] - A[0,1]*A[1,3]*A[3,2] - A[0,2]*A[1,1]*A[3,3] - A[0,3]*A[1,2]*A[3,1]
    b03 = A[0,1]*A[1,3]*A[2,2] + A[0,2]*A[1,1]*A[2,3] + A[0,3]*A[1,2]*A[2,1] - A[0,1]*A[1,2]*A[2,3] - A[0,2]*A[1,3]*A[2,1] - A[0,3]*A[1,1]*A[2,2]

    b10 = A[1,0]*A[2,3]*A[3,2] + A[1,2]*A[2,0]*A[3,3] + A[1,3]*A[2,2]*A[3,0] - A[1,0]*A[2,2]*A[3,3] - A[1,2]*A[2,3]*A[3,0] - A[1,3]*A[2,0]*A[3,2]
    b11 = A[0,0]*A[2,2]*A[3,3] + A[0,2]*A[2,3]*A[3,0] + A[0,3]*A[2,0]*A[3,2] - A[0,0]*A[2,3]*A[3,2] - A[0,2]*A[2,0]*A[3,3] - A[0,3]*A[2,2]*A[3,0]
    b12 = A[0,0]*A[1,3]*A[3,2] + A[0,2]*A[1,0]*A[3,3] + A[0,3]*A[1,2]*A[3,0] - A[0,0]*A[1,2]*A[3,3] - A[0,2]*A[1,3]*A[3,0] - A[0,3]*A[1,0]*A[3,2]
    b13 = A[0,0]*A[1,2]*A[2,3] + A[0,2]*A[1,3]*A[2,0] + A[0,3]*A[1,0]*A[2,2] - A[0,0]*A[1,3]*A[2,2] - A[0,2]*A[1,0]*A[2,3] - A[0,3]*A[1,2]*A[2,0]

    b20 = A[1,0]*A[2,1]*A[3,3] + A[1,1]*A[2,3]*A[3,0] + A[1,3]*A[2,0]*A[3,1] - A[1,0]*A[2,3]*A[3,1] - A[1,1]*A[2,0]*A[3,3] - A[1,3]*A[2,1]*A[3,0]
    b21 = A[0,0]*A[2,3]*A[3,1] + A[0,1]*A[2,0]*A[3,3] + A[0,3]*A[2,1]*A[3,0] - A[0,0]*A[2,1]*A[3,3] - A[0,1]*A[2,3]*A[3,0] - A[0,3]*A[2,0]*A[3,1]
    b22 = A[0,0]*A[1,1]*A[3,3] + A[0,1]*A[1,3]*A[3,0] + A[0,3]*A[1,0]*A[3,1] - A[0,0]*A[1,3]*A[3,1] - A[0,1]*A[1,0]*A[3,3] - A[0,3]*A[1,1]*A[3,0]
    b23 = A[0,0]*A[1,3]*A[2,1] + A[0,1]*A[1,0]*A[2,3] + A[0,3]*A[1,1]*A[2,0] - A[0,0]*A[1,1]*A[2,3] - A[0,1]*A[1,3]*A[2,0] - A[0,3]*A[1,0]*A[2,1]

    b30 = A[1,0]*A[2,2]*A[3,1] + A[1,1]*A[2,0]*A[3,2] + A[1,2]*A[2,1]*A[3,0] - A[1,0]*A[2,1]*A[3,2] - A[1,1]*A[2,2]*A[3,0] - A[1,2]*A[2,0]*A[3,1]
    b31 = A[0,0]*A[2,1]*A[3,2] + A[0,1]*A[2,2]*A[3,0] + A[0,2]*A[2,0]*A[3,1] - A[0,0]*A[2,2]*A[3,1] - A[0,1]*A[2,0]*A[3,2] - A[0,2]*A[2,1]*A[3,0]
    b32 = A[0,0]*A[1,2]*A[3,1] + A[0,1]*A[1,0]*A[3,2] + A[0,2]*A[1,1]*A[3,0] - A[0,0]*A[1,1]*A[3,2] - A[0,1]*A[1,2]*A[3,0] - A[0,2]*A[1,0]*A[3,1]
    b33 = A[0,0]*A[1,1]*A[2,2] + A[0,1]*A[1,2]*A[2,0] + A[0,2]*A[1,0]*A[2,1] - A[0,0]*A[1,2]*A[2,1] - A[0,1]*A[1,0]*A[2,2] - A[0,2]*A[1,1]*A[2,0]

    Ainv = np.array([[b00, b01, b02, b03], [b10, b11, b12, b13], [b20, b21, b22, b23], [b30, b31, b32, b33]]) / detA

return Ainv
© www.soinside.com 2019 - 2024. All rights reserved.