使用Pandas的特定时间序列数据框架

问题描述 投票:0回答:1

我有一年的5分钟数据是这样的。

df = pd.DataFrame([['1/1/2019 00:05', 1], ['1/1/2019 00:10', 5],['1/1/2019 00:15', 1], ['1/1/2019 00:20',3], ['1/1/2019 00:25', 1],
                   ['1/1/2019 00:30', 2], ['1/1/2019 00:35', 6],['1/1/2019 00:40', 8],['1/1/2019 00:45', 1], ['1/1/2019 00:55', 2],
                   ['1/1/2019 01:00', 8],['1/1/2019 01:05', 1], ['1/1/2019 01:10', 5],['1/1/2019 01:15', 1], ['1/1/2019 01:20',3],['1/1/2019 01:25', 1],
                   ['1/1/2019 01:30', 2], ['1/1/2019 01:35', 6],['1/1/2019 01:40', 8],['1/1/2019 01:45', 1], ['1/1/2019 01:55', 2],
                   ['1/1/2019 02:00', 8]],
                  columns = ['Date','Value'])

我想把每小时的数据转置到相应的时间段中去 现在,每一行对应于特定日期和特定月份的一个小时。就像这样。

df = pd.DataFrame([['day1hour0month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],  ['day1hour1month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], 
                   ['day1hour2month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour3month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], 
                   ['day1hour4month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour5month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], 
                   ['day1hour6month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour7month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], 
                   ['day1hour8month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour9month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], 
                   ['day31hour23month12', 1, 1, 8, 0, 6, 5, 3, 1, 1, 2,3,5]],
                  columns = ['Date', 'min05', 'min10', 'min15', 'min20', 'min25', 
                             'min30', 'min35', 'min40', 'min45', 'min50',
                             'min55', 'min60'])

有什么方法可以利用Pandas的时间序列功能来实现(不使用for循环)?我真的很感激任何实现这个操作的建议。

先谢谢你

干杯。

python pandas dataframe time-series transformation
1个回答
1
投票

基于你的样本数据框架。

In [2213]: df['Date'] = pd.to_datetime(df['Date'])
In [2191]: df1['dmh'] = 'day' + df.Date.dt.day.astype(str) + 'hour' + df.Date.dt.hour.astype(str) + 'month' + df.Date.dt.month.astype(str)

In [2199]: df['minute'] = 'min' + df.Date.dt.minute.astype(str)

In [2211]: df.pivot(index='dmh', columns='minute', values='Value')                                                                                                                                          
Out[2211]: 
minute           min0  min10  min15  min20  min25  min30  min35  min40  min45  min5  min55
dmh                                                                                       
day1hour0month1   NaN    5.0    1.0    3.0    1.0    2.0    6.0    8.0    1.0   1.0    2.0
day1hour1month1   8.0    5.0    1.0    3.0    1.0    2.0    6.0    8.0    1.0   1.0    2.0
day1hour2month1   8.0    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN   NaN    NaN
推荐问答
热门问答
最新问答