如何设置STM32生成标准的CRC32

问题描述 投票:0回答:6

我正在尝试使用 STM32L4 硬件模块生成 CRC。我想验证 fatfs 文件,所以基本上我有字节数组。我正在使用这个 CRC generator.

不幸的是,我无法弄清楚如何设置 STM32L4 以生成相同的结果。我需要 CRC32,我有

配置:

hcrc.Instance = CRC;

/* The default polynomial is not used. It is required to defined it in CrcHandle.Init.GeneratingPolynomial*/
hcrc.Init.DefaultPolynomialUse    = DEFAULT_POLYNOMIAL_DISABLE;
/* Set the value of the polynomial */
hcrc.Init.GeneratingPolynomial    = 0x4C11DB7;
//hcrc.Init.GeneratingPolynomial    = 0xFB3EE248;
hcrc.Init.CRCLength= CRC_POLYLENGTH_32B;
/* The default init value is used */
/* The default init value is not used */
hcrc.Init.DefaultInitValueUse     = DEFAULT_INIT_VALUE_ENABLE;

/* User init value is used instead */
//hcrc.Init.InitValue               = 0;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
//hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
/* The input data are inverted by word */
//hcrc.Init.InputDataInversionMode  = CRC_INPUTDATA_INVERSION_WORD;

//hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
HAL_CRC_Init(&hcrc);

测试:

uint8_t test[] = {49,50,51,52};
uint32_t uwCRCValue = HAL_CRC_Calculate(&hcrc,(uint32_t *) test, 4);

结果:

A695C4AA

我没主意了。有一种方法可以让我成功拥有

uint32_t test[]
并将输入设置为
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
不幸的是我有
uint8_t
...

c microcontroller stm32 crc32
6个回答
12
投票

使用 CubeMX,我生成了这些设置:

hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;

像这样计算CRC:

uint32_t crc = HAL_CRC_Calculate(&hcrc, (uint32_t *)address, length);

最后反转:

crc = ~crc;

5
投票

这对我有用。

static CRC_HandleTypeDef hcrc = { 
    .Instance = CRC, 
    .Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE,
    .Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE,
    .Init.CRCLength = CRC_POLYLENGTH_32B,
    .Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE,
    .Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE,
    .InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES,
};

和手动方法

static const uint32_t crc_table[0x100] = {
  0x00000000, 0x04C11DB7, 0x09823B6E, 0x0D4326D9, 0x130476DC, 0x17C56B6B, 0x1A864DB2, 0x1E475005, 0x2608EDB8, 0x22C9F00F, 0x2F8AD6D6, 0x2B4BCB61, 0x350C9B64, 0x31CD86D3, 0x3C8EA00A, 0x384FBDBD, 
  0x4C11DB70, 0x48D0C6C7, 0x4593E01E, 0x4152FDA9, 0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75, 0x6A1936C8, 0x6ED82B7F, 0x639B0DA6, 0x675A1011, 0x791D4014, 0x7DDC5DA3, 0x709F7B7A, 0x745E66CD, 
  0x9823B6E0, 0x9CE2AB57, 0x91A18D8E, 0x95609039, 0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6E5, 0xBE2B5B58, 0xBAEA46EF, 0xB7A96036, 0xB3687D81, 0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, 0xA06C0B5D, 
  0xD4326D90, 0xD0F37027, 0xDDB056FE, 0xD9714B49, 0xC7361B4C, 0xC3F706FB, 0xCEB42022, 0xCA753D95, 0xF23A8028, 0xF6FB9D9F, 0xFBB8BB46, 0xFF79A6F1, 0xE13EF6F4, 0xE5FFEB43, 0xE8BCCD9A, 0xEC7DD02D, 
  0x34867077, 0x30476DC0, 0x3D044B19, 0x39C556AE, 0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072, 0x128E9DCF, 0x164F8078, 0x1B0CA6A1, 0x1FCDBB16, 0x018AEB13, 0x054BF6A4, 0x0808D07D, 0x0CC9CDCA, 
  0x7897AB07, 0x7C56B6B0, 0x71159069, 0x75D48DDE, 0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02, 0x5E9F46BF, 0x5A5E5B08, 0x571D7DD1, 0x53DC6066, 0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA, 
  0xACA5C697, 0xA864DB20, 0xA527FDF9, 0xA1E6E04E, 0xBFA1B04B, 0xBB60ADFC, 0xB6238B25, 0xB2E29692, 0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EE0DF6, 0x99A95DF3, 0x9D684044, 0x902B669D, 0x94EA7B2A, 
  0xE0B41DE7, 0xE4750050, 0xE9362689, 0xEDF73B3E, 0xF3B06B3B, 0xF771768C, 0xFA325055, 0xFEF34DE2, 0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686, 0xD5B88683, 0xD1799B34, 0xDC3ABDED, 0xD8FBA05A, 
  0x690CE0EE, 0x6DCDFD59, 0x608EDB80, 0x644FC637, 0x7A089632, 0x7EC98B85, 0x738AAD5C, 0x774BB0EB, 0x4F040D56, 0x4BC510E1, 0x46863638, 0x42472B8F, 0x5C007B8A, 0x58C1663D, 0x558240E4, 0x51435D53, 
  0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47, 0x36194D42, 0x32D850F5, 0x3F9B762C, 0x3B5A6B9B, 0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF, 0x1011A0FA, 0x14D0BD4D, 0x19939B94, 0x1D528623, 
  0xF12F560E, 0xF5EE4BB9, 0xF8AD6D60, 0xFC6C70D7, 0xE22B20D2, 0xE6EA3D65, 0xEBA91BBC, 0xEF68060B, 0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F, 0xC423CD6A, 0xC0E2D0DD, 0xCDA1F604, 0xC960EBB3, 
  0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xB07DABA7, 0xAE3AFBA2, 0xAAFBE615, 0xA7B8C0CC, 0xA379DD7B, 0x9B3660C6, 0x9FF77D71, 0x92B45BA8, 0x9675461F, 0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3, 
  0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640, 0x4E8EE645, 0x4A4FFBF2, 0x470CDD2B, 0x43CDC09C, 0x7B827D21, 0x7F436096, 0x7200464F, 0x76C15BF8, 0x68860BFD, 0x6C47164A, 0x61043093, 0x65C52D24, 
  0x119B4BE9, 0x155A565E, 0x18197087, 0x1CD86D30, 0x029F3D35, 0x065E2082, 0x0B1D065B, 0x0FDC1BEC, 0x3793A651, 0x3352BBE6, 0x3E119D3F, 0x3AD08088, 0x2497D08D, 0x2056CD3A, 0x2D15EBE3, 0x29D4F654, 
  0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EA00A0, 0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C, 0xE3A1CBC1, 0xE760D676, 0xEA23F0AF, 0xEEE2ED18, 0xF0A5BD1D, 0xF464A0AA, 0xF9278673, 0xFDE69BC4, 
  0x89B8FD09, 0x8D79E0BE, 0x803AC667, 0x84FBDBD0, 0x9ABC8BD5, 0x9E7D9662, 0x933EB0BB, 0x97FFAD0C, 0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668, 0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4, 
};

uint32_t CalcCRC(uint8_t * pData, uint32_t DataLength)
{
    uint32_t Checksum = 0xFFFFFFFF;
    for(unsigned int i=0; i < DataLength; i++)
    {
        uint8_t top = (uint8_t)(Checksum >> 24);
        top ^= pData[i];
        Checksum = (Checksum << 8) ^ crc_table[top];
    }
    return Checksum;
}

3
投票

使用以下代码计算cc32。 STM32 CRC 单元计算的 CRC32 与我们标准的 CRC32 不同,它使用大端,不会与 0xFFFFFFFF 异或。

u32 CRC32_ForBytes(u8 *pData, u32 uLen);

#define UNUSED(x) ((void)(x))

/**
 * @brief  CRC functions
 */
#define __HAL_RCC_CRC_CLK_ENABLE()   do { \
                                        __IO uint32_t tmpreg; \
                                        SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
                                        /* Delay after an RCC peripheral clock enabling */\
                                        tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
                                        UNUSED(tmpreg); \
                                      } while(0)

#define __HAL_RCC_CRC_CLK_DISABLE()       (RCC->AHBENR &= ~(RCC_AHBENR_CRCEN))

#define CRC32_POLYNOMIAL                        ((u32)0xEDB88320)  
#define RCC_CRC_BIT                             ((u32)0x00001000)


/**
 * @brief  Calc CRC32 for data in bytes
 * @param  pData Buffer pointer
 * @param  uLen  Buffer Length
 * @retval CRC32 Checksum
 */
u32 CRC32_ForBytes(u8 *pData,u32 uLen)  
{  
    u32 uIndex= 0,uData = 0,i;  
    uIndex = uLen >> 2;  

    __HAL_RCC_CRC_CLK_ENABLE();

    /* Reset CRC generator */  
    CRC_ResetDR();

    while(uIndex--)  
    {  
#ifdef USED_BIG_ENDIAN    
        uData = __REV((u32*)pData);  
#else
        ((u8 *)&uData)[0] = pData[0];
        ((u8 *)&uData)[1] = pData[1];
        ((u8 *)&uData)[2] = pData[2];
        ((u8 *)&uData)[3] = pData[3];
#endif        
        pData += 4;  
        uData = revbit(uData);  
        CRC->DR = uData;  
    }  
    uData = revbit(CRC->DR);  
    uIndex = uLen & 0x03;  
    while(uIndex--)  
    {  
        uData ^= (u32)*pData++;  
        for(i = 0;i < 8;i++)  
          if (uData & 0x1)  
            uData = (uData >> 1) ^ CRC32_POLYNOMIAL;  
          else  
            uData >>= 1;  
    }

    __HAL_RCC_CRC_CLK_DISABLE();

    return uData^0xFFFFFFFF;  
}

static u32 revbit(u32 uData)
{  
    u32 uRevData = 0,uIndex = 0;  
    uRevData |= ((uData >> uIndex) & 0x01);  
    for(uIndex = 1;uIndex < 32;uIndex++)  
    {  
        uRevData <<= 1;  
        uRevData |= ((uData >> uIndex) & 0x01);  
    }  
    return uRevData;  
}

像这样计算你的 CRC32:

u32 uwCRCValue = CRC32_ForBytes(&test, 4);

0
投票

如果您想知道多项式

hcrc.Init.GeneratingPolynomial
hcrc.Init.CRCLength
的含义,这是一个小笔记。在您的初始示例中,您的多项式设置将给出:

> polyviz(0x4C11DB7, 32)
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1

如果你安装了 node.js,你可以使用我编写的以下函数将 stm32 crc 生成多项式转换为 crc 多项式

...+x^2+x^1+1
形式。

function polyviz(Pol, PolyLength)
{
  var msb = 31;

  process.stdout.write(" x^"+(PolyLength));
  while (msb-- > 0)
  {
    if ((Pol & (1 << msb)))
    {
      if (msb == 0)
      process.stdout.write(" + 1");
      else
      process.stdout.write(" + x^"+(msb));
    }
  }
  process.stdout.write("\r\n");
}

// Examples from HAL_CRCEx_Polynomial_Set():
// * for a polynomial of degree 16, X^16 + X^12 + X^5 + 1 is written 0x1021 (Bin: 0001 0000 0010 0001 )
polyviz(0x1021, 16)
// * for a polynomial of degree 7, X^7 + X^6 + X^5 + X^2 + 1 is written 0x65 (Bin: 0110 0101)
polyviz(0x65, 7)

使用此方法,您可以确认是否正确设置了多项式。 (因为许多 crc 标准使用多项式表示)


0
投票

我找到了这个教程(适用于 STM32F746)并将其与 STM32F407VGT6 一起使用,

IDE配置很多,直接访问可能会更好,抱歉我没有直接嵌入所有内容:

动手实践:CRC 校验和生成

注意:在这种情况下,要写入的文件是ROM.hex(您需要配置STM32CubeIDE才能自动执行此操作,IDE使用*.elf文件,请参阅如何执行以下提示):

关于此 CRC 用法的一些提示和解决方案(Windows/Linux)


0
投票

使用外设时实现应该很简单——基本上就是一个循环运行:

*(uint8_t*)&CRC->DR = buffer[i];

比较棘手的部分是(1)设置位翻转和 XOR'ing 以及(2)使用 32 位访问(一次向外围设备提供 4 个字节)同时避免与字节序相关的问题。 https://crccalc.com/ 有助于显示您将获得的变化,具体取决于位顺序是否颠倒,输出是否具有位异或等。我建议使用一些任意字节测试您的实现并比较结果使用该站点为相同数据生成的表。

这里是我的实现供参考。

#include "stm32g4xx_hal.h" // change, as appropriate, for your MCU
#include <stdlib.h>

// If you want to keep things simple you can delete or disable
// all of the 32-bit access stuff
#define USE_32BIT_ACCESS_TO_CRC
#ifdef USE_32BIT_ACCESS_TO_CRC
const int endian_check_word = 0x12345678;
#define IS_LITTLE_ENDIAN (0x12 == *(uint8_t*)&endian_check_word)
#endif

uint32_t crc32(uint8_t *buffer, size_t size) {
  // If the clock was turned on previously and kept on
  // then it isn't necessary to do that here each time.
  // Did it here to match ST's example in AN4187 (page 8)
  // https://www.st.com/resource/en/application_note/dm00068118-using-the-crc-peripheral-in-the-stm32-family-stmicroelectronics.pdf)
  __HAL_RCC_CRC_CLK_ENABLE();
  // For standard (Ethernet) CRC-32 bit order is reversed on input and and output
  CRC->CR = CRC_CR_REV_IN_0 | CRC_CR_REV_IN_1 | CRC_CR_REV_OUT;
  // The initial value and polynomial are set up during initialization.
  // Conveniently, in my case, the reset values are already correct:
  //CRC->INIT = 0xFFFFFFFF;
  //CRC->POL = 0x04C11DB7;
  uint32_t i = 0;
  // The problem with 32-bit access (to update with a batch of 4 bytes at a time)
  // is that we would have to reverse the order of the bytes due to endianness.
  // CRC peripheral supports reversing bits but not bytes, so the execution time
  // would probably not be any faster than simply iterating through the bytes.
  #ifdef USE_32BIT_ACCESS_TO_CRC
  //uint32_t full_word_bytes = (size / 4) * 4;
  //uint32_t full_word_bytes = (size >> 2) << 2;
  uint32_t full_word_bytes = size & 0b11;
  if (IS_LITTLE_ENDIAN) {
    CRC->CR |= CRC_CR_RESET;
    while (i < full_word_bytes) {
      CRC->DR = *(uint32_t*)&buffer[i];
      i += 4;
    }
  } else {
    uint8_t reversed_bytes[4];
    reversed_bytes[0] = buffer[i+3];
    reversed_bytes[1] = buffer[i+2];
    reversed_bytes[2] = buffer[i+1];
    reversed_bytes[3] = buffer[i];
    while (i < full_word_bytes) {
      CRC->DR = *(uint32_t*)&reversed_bytes[0];
      i += 4;
    }
  }
  #endif
  while (i < size) {
    // Here we are using 8-bit access to the CRC peripheral's data register
    // so it does introduce padding into the computation.
    // (e.g. the CRC of 4 zeros is different than for only 1)
    *(uint8_t*)&CRC->DR = buffer[i];
    i++;
  }
  // For standard (Ethernet) CRC-32 output bits need to all flip
  i = CRC->DR ^ 0xFFFFFFFF;
  __HAL_RCC_CRC_CLK_DISABLE();
  return i;
}
© www.soinside.com 2019 - 2024. All rights reserved.