scipy gaussian_kde 和循环数据

问题描述 投票:0回答:3

我正在使用 scipys gaussian_kde 来获取某些双峰数据的概率密度。但是,由于我的数据是有角度的(以度为单位的方向),当值出现在极限附近时,我会遇到问题。下面的代码给出了两个 kde 示例,当域为 0-360 时,它估计不足,因为它无法处理数据的循环性质。 pdf 需要在单位圆上定义,但我在 scipy.stats 中找不到适合此类数据的任何内容(那里有 von mises 分布,但仅适用于单峰数据)。有没有人在那里遇到过这个?是否有任何东西(最好是基于 python 的)可用于估计单位圆上的双峰 pdf?

import numpy as np
import scipy as sp
from pylab import plot,figure,subplot,show,hist
from scipy import stats



baz = np.array([-92.29061004, -85.42607874, -85.42607874, -70.01689348,
               -63.43494882, -63.43494882, -70.01689348, -70.01689348,
               -59.93141718, -63.43494882, -59.93141718, -63.43494882,
               -63.43494882, -63.43494882, -57.52880771, -53.61564818,
               -57.52880771, -63.43494882, -63.43494882, -92.29061004,
               -16.92751306, -99.09027692, -99.09027692, -16.92751306,
               -99.09027692, -16.92751306,  -9.86580694,  -8.74616226,
                -9.86580694,  -8.74616226,  -8.74616226,  -2.20259816,
                -2.20259816,  -2.20259816,  -9.86580694,  -2.20259816,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                 4.96974073,   4.96974073,   4.96974073,   4.96974073,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                -2.48955292,  -9.86580694,  -9.86580694,  -9.86580694,
               -16.92751306, -19.29004622, -19.29004622, -26.56505118,
               -19.29004622, -19.29004622, -19.29004622, -19.29004622])


xx = np.linspace(-180, 180, 181)
scipy_kde = stats.gaussian_kde(baz)              
print scipy_kde.integrate_box_1d(-180,180)

figure()
plot(xx, scipy_kde(xx), c='green')             

baz[baz<0] += 360             
xx = np.linspace(0, 360, 181)
scipy_kde = stats.gaussian_kde(baz)              
print scipy_kde.integrate_box_1d(-180,180)
plot(xx, scipy_kde(xx), c='red')             
scipy gaussian kernel-density probability-density
3个回答
11
投票

Dave 的答案不正确,因为

scipy
vonmises
没有环绕
[-pi, pi]
.

您可以使用以下代码,它基于相同的原理。它基于 numpy.

中描述的方程式
def vonmises_kde(data, kappa, n_bins=100):
    from scipy.special import i0
    bins = np.linspace(-np.pi, np.pi, n_bins)
    x = np.linspace(-np.pi, np.pi, n_bins)
    # integrate vonmises kernels
    kde = np.exp(kappa*np.cos(x[:, None]-data[None, :])).sum(1)/(2*np.pi*i0(kappa))
    kde /= np.trapz(kde, x=bins)
    return bins, kde

举个例子

import matplotlib.pyplot as plt
import numpy as np
from numpy.random import vonmises

# generate complex circular distribution
data = np.r_[vonmises(-1, 5, 1000), vonmises(2, 10, 500), vonmises(3, 20, 100)]

# plot data histogram
fig, axes = plt.subplots(2, 1)
axes[0].hist(data, 100)

# plot kernel density estimates
x, kde = vonmises_kde(data, 20)
axes[1].plot(x, kde)


5
投票

这是@kingjr 更准确答案的快速近似

def vonmises_pdf(x, mu, kappa):
    return np.exp(kappa * np.cos(x - mu)) / (2. * np.pi * scipy.special.i0(kappa))


def vonmises_fft_kde(data, kappa, n_bins):
    bins = np.linspace(-np.pi, np.pi, n_bins + 1, endpoint=True)
    hist_n, bin_edges = np.histogram(data, bins=bins)
    bin_centers = np.mean([bin_edges[1:], bin_edges[:-1]], axis=0)
    kernel = vonmises_pdf(
        x=bin_centers,
        mu=0,
        kappa=kappa
    )
    kde = np.fft.fftshift(np.fft.irfft(np.fft.rfft(kernel) * np.fft.rfft(hist_n)))
    kde /= np.trapz(kde, x=bin_centers)
    return bin_centers, kde

测试(使用tqdm做进度条和计时,用matplotlib验证结果):

import numpy as np
from tqdm import tqdm
import scipy.stats
import matplotlib.pyplot as plt

n_runs = 1000
n_bins = 100
kappa = 10

for _ in tqdm(xrange(n_runs)):
    bins1, kde1 = vonmises_kde(
        data=np.r_[
            np.random.vonmises(-1, 5, 1000),
            np.random.vonmises(2, 10, 500),
            np.random.vonmises(3, 20, 100)
        ],
        kappa=kappa,
        n_bins=n_bins
    )


for _ in tqdm(xrange(n_runs)):
    bins2, kde2 = vonmises_fft_kde(
        data=np.r_[
            np.random.vonmises(-1, 5, 1000),
            np.random.vonmises(2, 10, 500),
            np.random.vonmises(3, 20, 100)
        ],
        kappa=kappa,
        n_bins=n_bins
    )

plt.figure()
plt.plot(bins1, kde1, label="kingjr's solution")
plt.plot(bins2, kde2, label="dolf's FFT solution")
plt.legend()
plt.show()

结果:

100%|██████████| 1000/1000 [00:07<00:00, 135.29it/s]
100%|██████████| 1000/1000 [00:00<00:00, 1945.14it/s]

(1945 / 135 = 快 14 倍)

要获得更快的速度,请使用 2 的整数次方作为 bin 的数量。它还具有更好的扩展性(即,它可以快速处理许多 bin 和大量数据)。在我的电脑上,它比 n_bins=1024 的原始答案快 118 倍。

为什么有效?

两个信号的 FFT 乘积(没有 零填充)等于两个信号的循环(或循环)卷积核密度估计基本上是一个与信号卷积的核,该信号在每个数据点的位置都有一个脉冲。

为什么不准确?

由于我使用直方图来均匀分布数据,所以我丢失了每个样本的确切位置,而只使用它所属的 bin 的中心。每个 bin 中的样本数用作该点的脉冲幅度。 例如: 暂时忽略归一化,如果您有一个从 0 到 1 的 bin,并且该 bin 中有两个样本,分别为 0.1 和 0.2,则

exact
KDE 将为
the kernel centred around 0.1
+
the kernel centred around 0.2
。近似值将是 2x`以 0.5 为中心的内核,这是 bin 的中心。


0
投票

所以我有一个我认为合理的解决方案。基本上,我使用 Von Mises 分布作为核密度估计的基函数。代码如下,以防对其他人有用。

def vonmises_KDE(data, kappa, plot=None):       

    """    
    Create a kernal densisity estimate of circular data using the von mises 
    distribution as the basis function.

    """

    # imports
    from scipy.stats import vonmises
    from scipy.interpolate import interp1d

    # convert to radians
    data = np.radians(data)

    # set limits for von mises
    vonmises.a = -np.pi
    vonmises.b = np.pi
    x_data = np.linspace(-np.pi, np.pi, 100)

    kernels = []

    for d in data:

        # Make the basis function as a von mises PDF
        kernel = vonmises(kappa, loc=d)
        kernel = kernel.pdf(x_data)
        kernels.append(kernel)

        if plot:
            # For plotting
            kernel /= kernel.max()
            kernel *= .2
            plt.plot(x_data, kernel, "grey", alpha=.5)


    vonmises_kde = np.sum(kernels, axis=0)
    vonmises_kde = vonmises_kde / np.trapz(vonmises_kde, x=x_data)
    f = interp1d( x_data, vonmises_kde )


    if plot:
        plt.plot(x_data, vonmises_kde, c='red')  

    return x_data, vonmises_kde, f

baz = np.array([-92.29061004, -85.42607874, -85.42607874, -70.01689348,
               -63.43494882, -63.43494882, -70.01689348, -70.01689348,
               -59.93141718, -63.43494882, -59.93141718, -63.43494882,
               -63.43494882, -63.43494882, -57.52880771, -53.61564818,
               -57.52880771, -63.43494882, -63.43494882, -92.29061004,
               -16.92751306, -99.09027692, -99.09027692, -16.92751306,
               -99.09027692, -16.92751306,  -9.86580694,  -8.74616226,
                -9.86580694,  -8.74616226,  -8.74616226,  -2.20259816,
                -2.20259816,  -2.20259816,  -9.86580694,  -2.20259816,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                 4.96974073,   4.96974073,   4.96974073,   4.96974073,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                -2.48955292,  -9.86580694,  -9.86580694,  -9.86580694,
               -16.92751306, -19.29004622, -19.29004622, -26.56505118,
               -19.29004622, -19.29004622, -19.29004622, -19.29004622])   
kappa = 12
x_data, vonmises_kde, f = vonmises_KDE(baz, kappa, plot=1)
© www.soinside.com 2019 - 2024. All rights reserved.