使用标准库对 Agda 中的对/列表进行字典顺序排序

问题描述 投票:0回答:1

Agda 标准库包含一些模块

Relation.Binary.*.(Non)StrictLex
(目前仅适用于
Product
List
)。我们可以使用这些模块轻松构造一个实例,例如,自然数对的
IsStrictTotalOrder
(即
ℕ × ℕ
)。

open import Data.Nat as ℕ using (ℕ; _<_)
open import Data.Nat.Properties as ℕ
open import Relation.Binary using (module StrictTotalOrder; IsStrictTotalOrder)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Binary.Product.StrictLex using (×-Lex; _×-isStrictTotalOrder_)
open import Relation.Binary.Product.Pointwise using (_×-Rel_)

ℕ-isSTO : IsStrictTotalOrder _≡_ _<_
ℕ-isSTO = StrictTotalOrder.isStrictTotalOrder ℕ.strictTotalOrder

ℕ×ℕ-isSTO : IsStrictTotalOrder (_≡_ ×-Rel _≡_) (×-Lex _≡_ _<_ _<_)
ℕ×ℕ-isSTO = ℕ-isSTO ×-isStrictTotalOrder ℕ-isSTO

这将使用逐点相等

_≡_ ×-Rel _≡_
创建一个实例。在命题相等的情况下,这应该等同于使用just命题相等。

有没有一种简单的方法可以使用正常的命题相等将上面的实例转换为

IsStrictTotalOrder _≡_ (×-Lex _≡_ _<_ _<_)
类型的实例?

standard-library agda
1个回答
2
投票

所需的套件组装起来并不难:

open import Data.Product
open import Function using (_∘_; case_of_)
open import Relation.Binary

_⇔₂_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _
_≈_ ⇔₂ _≈′_ = (∀ {x y} → x ≈ y → x ≈′ y) × (∀ {x y} → x ≈′ y → x ≈ y)

-- I was unable to write this nicely using Data.Product.map... 
-- hence it is moved here to a toplevel where it can pattern-match
-- on the product of proofs
transform-resp : ∀ {a ℓ₁ ℓ₂ ℓ} {A : Set a} {≈ : Rel A ℓ₁} {≈′ : Rel A ℓ₂} {< : Rel A ℓ} →
                 ≈ ⇔₂ ≈′ →
                 < Respects₂ ≈ → < Respects₂ ≈′
transform-resp (to ,  from) = λ { (resp₁ , resp₂) → (resp₁ ∘ from , resp₂ ∘ from) }

transform-isSTO : ∀ {a ℓ₁ ℓ₂ ℓ} {A : Set a} {≈ : Rel A ℓ₁} {≈′ : Rel A ℓ₂} {< : Rel A ℓ} →
                  ≈ ⇔₂ ≈′ →
                  IsStrictTotalOrder ≈ < → IsStrictTotalOrder ≈′ <
transform-isSTO {≈′ = ≈′} {< = <} (to , from) isSTO = record
  { isEquivalence = let open IsEquivalence (IsStrictTotalOrder.isEquivalence isSTO)
                    in record { refl = to refl
                              ; sym = to ∘ sym ∘ from
                              ; trans = λ x y → to (trans (from x) (from y))
                              }
  ; trans = IsStrictTotalOrder.trans isSTO
  ; compare = compare
  ; <-resp-≈ = transform-resp (to , from) (IsStrictTotalOrder.<-resp-≈ isSTO)
  }
  where
    compare : Trichotomous ≈′ <
    compare x y with IsStrictTotalOrder.compare isSTO x y
    compare x y | tri< a ¬b ¬c = tri< a (¬b ∘ from) ¬c
    compare x y | tri≈ ¬a b ¬c = tri≈ ¬a (to b) ¬c
    compare x y | tri> ¬a ¬b c = tri> ¬a (¬b ∘ from) c

然后我们可以用它来解决你原来的问题:

ℕ×ℕ-isSTO′ : IsStrictTotalOrder _≡_ (×-Lex _≡_ _<_ _<_)
ℕ×ℕ-isSTO′ = transform-isSTO (to , from) ℕ×ℕ-isSTO
  where
    open import Function using (_⟨_⟩_)
    open import Relation.Binary.PropositionalEquality

    to : ∀ {a b} {A : Set a} {B : Set b}
         {x x′ : A} {y y′ : B} → (x , y) ⟨ _≡_ ×-Rel _≡_ ⟩ (x′ , y′) → (x , y) ≡ (x′ , y′)
    to (refl , refl) = refl

    from : ∀ {a b} {A : Set a} {B : Set b}
           {x x′ : A} {y y′ : B} → (x , y) ≡ (x′ , y′) → (x , y) ⟨ _≡_ ×-Rel _≡_ ⟩ (x′ , y′)
    from refl = refl , refl
© www.soinside.com 2019 - 2024. All rights reserved.