在子矩阵中找到行方向最大值的最快方法

问题描述 投票:1回答:1

在一个性能关键的代码中,我得到了2个大型矩阵,(数千个)

期望,实现

相同大小但包含不同的值。这些矩阵以相同的方式在列上分区,每个子矩阵具有不同的列数。像这样的东西

submat1     submat2     submat3
-----------------------------
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
|...........| .......| .....|
-----------------------------

我需要以下列方式填充第三个矩阵的最快方法(伪代码)

for each submatrix
    for each row in submatrix
        pos= argmax(expectations(row,start_submatrix(col):end_submatrix(col)))
        result(row,col) =  realization(row,pos)

也就是说,对于每个子矩阵,我扫描每一行,找到期望子矩阵中最大元素的位置,并将实现矩阵的对应值放入结果矩阵中。

我希望以最快的方式实现这一目标,可能通过智能并行化/缓存优化,因为这个功能是我在算法中花费40%的时间。我使用visual studio 15.9.6和Windows 10。

这是我的参考C ++实现,我使用Armadillo(列主要)矩阵

#include <iostream>
#include <chrono>
#include <vector>

///Trivial implementation, for illustration purposes
void find_max_vertical_trivial(const arma::mat& expectations, const arma::mat& realizations, arma::mat& results, const arma::uvec & list, const int max_size_action)
{
    const int number_columns_results = results.n_cols;
    const int number_rows = expectations.n_rows;
#pragma omp parallel for schedule(static)
    for (int submatrix_to_process = 0; submatrix_to_process < number_columns_results; submatrix_to_process++)
    {
        const int start_loop = submatrix_to_process * max_size_action;
        //Looping over rows
        for (int current_row = 0; current_row < number_rows; current_row++)
        {
            int candidate = start_loop;
            const int end_loop = candidate + list(submatrix_to_process);
            //Finding the optimal action
            for (int act = candidate + 1; act < end_loop; act++)
            {
                if (expectations(current_row, act) > expectations(current_row, candidate))
                    candidate = act;
            }
            //Placing the corresponding realization into the results
            results(current_row, submatrix_to_process) = realizations(current_row, candidate);
        }
    }
}

这是我能想到的最快的方式。有可能改善它吗?

///Stripped all armadillo functionality, to bare C
void find_max_vertical_optimized(const arma::mat& expectations, const arma::mat& realizations, arma::mat& values, const arma::uvec & list, const int max_block)
{
    const int n_columns = values.n_cols;
    const int number_rows = expectations.n_rows;
    const auto exp_ptr = expectations.memptr();
    const auto real_ptr = realizations.memptr();
    const auto values_ptr = values.memptr();
    const auto list_ptr = list.memptr();
#pragma omp parallel for schedule(static)
    for (int col_position = 0; col_position < n_columns; col_position++)
    {
        const int start_loop = col_position * max_block*number_rows;
        const int end_loop = start_loop + list_ptr[col_position]*number_rows;
        const int position_value = col_position * number_rows;
        for (int row_position = 0; row_position < number_rows; row_position++)
        {
            int candidate = start_loop;
            const auto st_exp = exp_ptr + row_position;
            const auto st_real = real_ptr + row_position;
            const auto st_val = values_ptr + row_position;
            for (int new_candidate = candidate + number_rows; new_candidate < end_loop; new_candidate+= number_rows)
            {
                if (st_exp[new_candidate] > st_exp[candidate])
                    candidate = new_candidate;
            }
            st_val[position_value] = st_real[candidate];
        }
    }
}

和测试部分,我在那里比较性能

typedef std::chrono::microseconds dur;
const double dur2seconds = 1e6;

//Testing the two methods
int main()
{
    const int max_cols_submatrix = 6; //Typical size: 3-100
    const int n_test = 500;
    const int number_rows = 2000;   //typical size: 1000-10000
    std::vector<int> size_to_test = {4,10,40,100,1000,5000 }; //typical size: 10-5000
    arma::vec time_test(n_test, arma::fill::zeros);
    arma::vec time_trivial(n_test, arma::fill::zeros);

    for (const auto &size_grid : size_to_test) {
        arma::mat expectations(number_rows, max_cols_submatrix*size_grid, arma::fill::randn);
        arma::mat realizations(number_rows, max_cols_submatrix*size_grid, arma::fill::randn);
        arma::mat reference_values(number_rows, size_grid, arma::fill::zeros);
        arma::mat optimized_values(number_rows, size_grid, arma::fill::zeros);
        arma::uvec number_columns_per_submatrix(size_grid);
        //Generate random number of columns per each submatrices
        number_columns_per_submatrix= arma::conv_to<arma::uvec>::from(arma::vec(size_grid,arma::fill::randu)*max_cols_submatrix);
        for (int i = 0; i < n_test; i++) {
            auto st_meas = std::chrono::high_resolution_clock::now();
            find_max_vertical_trivial(expectations, realizations, optimized_values, number_columns_per_submatrix, max_cols_submatrix);
            time_trivial(i) = std::chrono::duration_cast<dur>(std::chrono::high_resolution_clock::now() - st_meas).count() / dur2seconds;;
            st_meas = std::chrono::high_resolution_clock::now();
            find_max_vertical_optimized(expectations, realizations, reference_values, number_columns_per_submatrix, max_cols_submatrix);
            time_test(i) = std::chrono::duration_cast<dur>(std::chrono::high_resolution_clock::now() - st_meas).count() / dur2seconds;
            const auto diff = arma::sum(arma::sum(arma::abs(reference_values - optimized_values)));
            if (diff > 1e-3)
            {
                std::cout <<"Error: " <<diff << "\n";
                throw std::runtime_error("Error");
            }
        }
        std::cout <<"grid size:"<< size_grid << "\n";
        const double mean_time_trivial = arma::mean(time_trivial);
        const double mean_time_opt = arma::mean(time_test);

        std::cout << "Trivial: "<< mean_time_trivial << " s +/-" << 1.95*arma::stddev(time_trivial) / sqrt(n_test) <<"\n";
        std::cout << "Optimized: "<< mean_time_opt <<" s ("<< (mean_time_opt/ mean_time_trivial-1)*100.0 <<" %) "<<"+/-" << 1.95*arma::stddev(time_test) / sqrt(n_test)  << "\n";
    }
}
c++ micro-optimization
1个回答
0
投票

您可以使用SIMD循环优化缓存,该循环可读取8或12个完整的行向量,然后是下一列的相同行。 (因此对于32位元素,并行8 * 4或8 * 8行)。您正在使用支持x86 SSE2 / AVX2内在函数的MSVC,如_mm256_load_ps_mm256_max_ps,或_mm256_max_epi32

如果从对齐边界开始,那么希望您可以读取所有触摸的所有缓存行。然后在输出中使用相同的访问模式。 (所以你正在读取2到6个连续的缓存行,读取/写入块之间有一个跨度。)

或者可能在某些地方记录tmp结果紧凑(每行每个段1个值),然后将更多缓存写入相同元素的副本写入每列。但尝试两种方式;混合读写可能会让CPU更好地重叠工作并找到更多的内存级并行性。

© www.soinside.com 2019 - 2024. All rights reserved.