STM32通过UART传输数据

问题描述 投票:0回答:1

我有一块stm32f407G-DISC1和一块NUCLEO-F420ZI开发板。我想从 f407 的内部加速度计收集数据并通过 UART 将它们传输到 NUCLEO 板。我收集并发送数据,但无法从 NUCLEO 接收这些数据。我确信引脚连接正确。我与您分享这两张卡的代码。您认为问题可能出在哪里?

发件人代码:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "MY_LIS3DSH.h"
#include "stdio.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
LIS3DSH_InitTypeDef myAccConfigDef;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define ACC_BUFFER_SIZE 400
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

UART_HandleTypeDef huart1;

/* Definitions for ReadACCData */
osThreadId_t ReadACCDataHandle;
const osThreadAttr_t ReadACCData_attributes = {
  .name = "ReadACCData",
  .stack_size = 1024 * 4,
  .priority = (osPriority_t) osPriorityHigh,
};
/* Definitions for TransmitterTask */
osThreadId_t TransmitterTaskHandle;
const osThreadAttr_t TransmitterTask_attributes = {
  .name = "TransmitterTask",
  .stack_size = 1024 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for ACCDataQueue */
osMessageQueueId_t ACCDataQueueHandle;
const osMessageQueueAttr_t ACCDataQueue_attributes = {
  .name = "ACCDataQueue"
};
/* USER CODE BEGIN PV */
int AccDataBufferIndex = 0;
LIS3DSH_DataRaw myData;
uint8_t drdyFlag = 0;
int16_t AccDataBuffer_16bit[1200];
uint8_t AccDataBuffer_8bit[ACC_BUFFER_SIZE * 3 * 2]; // 3 axes * 2 bytes];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
void ReadACCDataFunction(void *argument);
void TransmitterTaskFunction(void *argument);

/* USER CODE BEGIN PFP */
void LedBlink(LIS3DSH_DataRaw data);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Init scheduler */
  osKernelInitialize();

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */

  /* Create the queue(s) */
  /* creation of ACCDataQueue */
  ACCDataQueueHandle = osMessageQueueNew (150, sizeof(uint16_t), &ACCDataQueue_attributes);

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */

  /* Create the thread(s) */
  /* creation of ReadACCData */
  ReadACCDataHandle = osThreadNew(ReadACCDataFunction, NULL, &ReadACCData_attributes);

  /* creation of TransmitterTask */
  TransmitterTaskHandle = osThreadNew(TransmitterTaskFunction, NULL, &TransmitterTask_attributes);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

  /* USER CODE BEGIN RTOS_EVENTS */
  /* add events, ... */
  /* USER CODE END RTOS_EVENTS */

  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */
  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(ACC_CS_GPIO_Port, ACC_CS_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET);

  /*Configure GPIO pin : ACC_CS_Pin */
  GPIO_InitStruct.Pin = ACC_CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(ACC_CS_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : PA0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : PD12 PD13 PD14 PD15 */
  GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  /*Configure GPIO pin : ACC_EXTI_Pin */
  GPIO_InitStruct.Pin = ACC_EXTI_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(ACC_EXTI_GPIO_Port, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI0_IRQn, 5, 0);
  HAL_NVIC_EnableIRQ(EXTI0_IRQn);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void LedBlink(LIS3DSH_DataRaw data)
{
    HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15, GPIO_PIN_RESET); // Reset all pins

    if (data.z > 5000)
    {
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15, GPIO_PIN_SET); // Set all pins
    }
    if (data.x > 5000)
    {
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
    }
    if (data.x < -5000)
    {
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12, GPIO_PIN_SET);
    }
    if (data.y > 5000)
    {
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_13, GPIO_PIN_SET);
    }
    if (data.y < -5000)
    {
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15, GPIO_PIN_SET);
    }
}


void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(GPIO_Pin);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_GPIO_EXTI_Callback could be implemented in the user file
   */

    drdyFlag = 1;
    //HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_13);
}

/* USER CODE END 4 */

/* USER CODE BEGIN Header_ReadACCDataFunction */
/**
  * @brief  Function implementing the ReadACCData thread.
  * @param  argument: Not used
  * @retval None
  */
/* USER CODE END Header_ReadACCDataFunction */
void ReadACCDataFunction(void *argument)
{
  /* USER CODE BEGIN 5 */
    HAL_StatusTypeDef uartStatus;
    myAccConfigDef.dataRate = LIS3DSH_DATARATE_400;
    myAccConfigDef.fullScale = LIS3DSH_FULLSCALE_2;
    myAccConfigDef.antiAliasingBW = LIS3DSH_FILTER_BW_50;
    myAccConfigDef.enableAxes = LIS3DSH_XYZ_ENABLE;
    myAccConfigDef.interruptEnable = true;
    int16_t dataIndex16Bit = 0;
    int16_t dataIndex8Bit = 0;
    LIS3DSH_Init(&hspi1, &myAccConfigDef);

    LIS3DSH_X_calibrate(-1000.0, 980.0);
    LIS3DSH_Y_calibrate(-1020.0, 1040.0);
    LIS3DSH_Z_calibrate(-920.0, 1040.0);
  /* Infinite loop */
  for(;;)
  {
      if (drdyFlag == 1)
      {
          drdyFlag = 0;
          myData = LIS3DSH_GetDataRaw();
          AccDataBuffer_8bit[dataIndex8Bit++] = myData.x & 0xFF;
          AccDataBuffer_8bit[dataIndex8Bit++] = (myData.x >> 8) & 0xFF;
          AccDataBuffer_16bit[dataIndex16Bit++] = myData.x;

          AccDataBuffer_8bit[dataIndex8Bit++] = myData.y & 0xFF;
          AccDataBuffer_8bit[dataIndex8Bit++] = (myData.y >> 8) & 0xFF;
          AccDataBuffer_16bit[dataIndex16Bit++] = myData.y;

          AccDataBuffer_8bit[dataIndex8Bit++] = myData.z & 0xFF;
          AccDataBuffer_8bit[dataIndex8Bit++] = (myData.z >> 8) & 0xFF;
          AccDataBuffer_16bit[dataIndex16Bit++] = myData.z;

          if (dataIndex16Bit == ACC_BUFFER_SIZE * 3)
          {
                dataIndex16Bit=0;
                dataIndex8Bit=0;
                uartStatus = HAL_UART_Transmit(&huart1, AccDataBuffer_8bit, ACC_BUFFER_SIZE * 6, HAL_MAX_DELAY);

          }
            LedBlink(myData);
      }
  }
    osDelay(1);
}
  /* Infinite loop */
  /* USER CODE END 5 */


/* USER CODE BEGIN Header_TransmitterTaskFunction */
/**
* @brief Function implementing the TransmitterTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_TransmitterTaskFunction */
void TransmitterTaskFunction(void *argument)
{
  /* USER CODE BEGIN TransmitterTaskFunction */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END TransmitterTaskFunction */
}

/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM1 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM1) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

------------------------------------------------- -------------------------------------------------- ---

接收器代码:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define RX_BUFFER_SIZE 2400 /* Assuming the same buffer size as the sender */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;

/* Definitions for UARTRxTask */
osThreadId_t UARTRxTaskHandle;
const osThreadAttr_t UARTRxTask_attributes = {
  .name = "UARTRxTask",
  .stack_size = 2048 * 4,
  .priority = (osPriority_t) osPriorityHigh,
};
/* USER CODE BEGIN PV */
uint8_t RxBuffer[RX_BUFFER_SIZE];
uint16_t RxIndex = 0;
int16_t AccData[RX_BUFFER_SIZE / 2]; // Buffer to store 16-bit accelerometer data
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
void UARTRxTaskFunction(void *argument);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Init scheduler */
  osKernelInitialize();

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */

  /* Create the thread(s) */
  /* creation of UARTRxTask */
  UARTRxTaskHandle = osThreadNew(UARTRxTaskFunction, NULL, &UARTRxTask_attributes);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

  /* USER CODE BEGIN RTOS_EVENTS */
  /* add events, ... */
  /* USER CODE END RTOS_EVENTS */

  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {


    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_14, GPIO_PIN_RESET);

  /*Configure GPIO pins : PB0 PB14 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_14;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/* USER CODE BEGIN Header_UARTRxTaskFunction */
/**
  * @brief  Function implementing the UARTRxTask thread.
  * @param  argument: Not used
  * @retval None
  */
/* USER CODE END Header_UARTRxTaskFunction */
void UARTRxTaskFunction(void *argument)
{
  /* USER CODE BEGIN 5 */
    HAL_StatusTypeDef uartStatus;


    /* Infinite loop */
    for (;;)
    {
        uartStatus = HAL_UART_Receive(&huart1, RxBuffer, RX_BUFFER_SIZE, 5000); // Receive 2400 bytes

        if (uartStatus == HAL_OK)
        {
            // Convert received 8-bit data to 16-bit data and store in AccData buffer
            for (uint16_t i = 0; i < RX_BUFFER_SIZE; i += 2)
            {
                AccData[RxIndex++] = (uint16_t)(RxBuffer[i] | (RxBuffer[i + 1] << 8));
            }

            RxIndex = 0; // Reset the index for the next reception
        }
        else
        {
            printf("Error receiving data via UART\n");
        }

        osDelay(1);
    }
  /* USER CODE END 5 */
}

/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM1 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM1) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

这实际上是一个非常简单的应用程序。我在两张卡之间传输了一个字符串,但它只有大约 20 个字节。我在发送方设备上收到状态正常反馈,但在接收方设备上出现超时错误。即使我将超时时间设置为最大,它也会长时间保留在该功能中,因此无法正常工作。

uart serial-communication stm32f4discovery stm32cubeide nucleo
1个回答
0
投票
  1. 首先分析硬件问题。使用示波器或USB TO TTL工具捕获TX和RX数据,以确认硬件是否正常。
  2. 检查软件波特率和奇偶校验位是否配置正确。
  3. 如果一切都检查完毕,您可以联系我,我们将一起分析您的代码。
© www.soinside.com 2019 - 2024. All rights reserved.