使用icc,gcc和clang进行相同实现的不同性能的原因是什么?

问题描述 投票:3回答:1

我为a[i]=a[i-1]+c实施了一个程序,我代表她。我使用begin_rdtsc and end_rdtsc来读取和存储rdtsc以测量加速。

该程序如下,我使用x86intrin.h

#define MAX1 512
#define LEN MAX1*MAX1  //array size for time measure ments
int __attribute__(( aligned(32))) a[LEN];

int main(){

    singleCore // It's a macro to assign the program to a single core of the processor
    int i, b, c;

    begin_rdtsc

    // b=1 and c=2 in this case
    b = 1;
    c = 2;
    i = 0;

    a[i++] = b;//0 --> a[0] = 1
    //step 1:
    //solving dependencies vectorization factor is 8
    a[i++] = a[0] + 1*c; //1  --> a[1] = 1 + 2  = 3
    a[i++] = a[0] + 2*c; //2  --> a[2] = 1 + 4  = 5
    a[i++] = a[0] + 3*c; //3  --> a[3] = 1 + 6  = 7
    a[i++] = a[0] + 4*c; //4  --> a[4] = 1 + 8  = 9
    a[i++] = a[0] + 5*c; //5  --> a[5] = 1 + 10 = 11
    a[i++] = a[0] + 6*c; //6  --> a[6] = 1 + 12 = 13
    a[i++] = a[0] + 7*c; //7  --> a[7] = 1 + 14 = 15
    // vectorization factor reached
    // 8 *c will work for all 
    //loading the results to an vector
    __m256i dep1;
    //__m256i  dep2; //  dep = { 1,   3,  5, 7,  9,  11, 13, 15 }
    __m256i coeff = _mm256_set1_epi32(8*c); //coeff = { 16, 16, 16, 16, 16, 16, 16, 16 }
    //step2
    for(; i<LEN-1; i+=8){

        dep1 = _mm256_load_si256((__m256i *) &a[i-8]);
        dep1 = _mm256_add_epi32(dep1, coeff);
        _mm256_store_si256((__m256i *) &a[i], dep1);    

    }
    end_rdtsc
    return 0;
}

我用不同的编译器编译了这个程序。我的编译器是:icc 18,gcc 7.2,clang 4。

操作系统是fedora 27。

CPU是Corei7 6700HQ(Skylake)

使用icc -D _GNU_SOURCE -O3 -no-vec -march=native编译的标量实现是加速测量的基线。

每个编译器的asm输出如下:由于ICC的行为不正常,我复制了icc的所有代码。我在C程序中标记了部分(“mm ... mm1 / 2”)。

  1. ICC Kakssupoi
  2. GCC # mark_description "Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 18.0.1.163 Build 20171018"; # mark_description "-D _GNU_SOURCE -O3 -no-vec -march=native -c -S -o AIC3iccnovec"; .file "AIC3.c" .text ..TXTST0: .L_2__routine_start_main_0: # -- Begin main .text # mark_begin; .align 16,0x90 .globl main # --- main() main: ..B1.1: # Preds ..B1.0 # Execution count [1.00e+00] .cfi_startproc ..___tag_value_main.1: ..L2: #7.11 pushq %rbp #7.11 .cfi_def_cfa_offset 16 movq %rsp, %rbp #7.11 .cfi_def_cfa 6, 16 .cfi_offset 6, -16 andq $-128, %rsp #7.11 subq $128, %rsp #7.11 xorl %esi, %esi #7.11 movl $3, %edi #7.11 call __intel_new_feature_proc_init #7.11 # LOE rbx r12 r13 r14 r15 ..B1.21: # Preds ..B1.1 # Execution count [1.00e+00] vstmxcsr (%rsp) #7.11 vpxor %ymm0, %ymm0, %ymm0 #9.2 orl $32832, (%rsp) #7.11 vldmxcsr (%rsp) #7.11 vmovups %ymm0, mask(%rip) #9.2 vmovups %ymm0, 32+mask(%rip) #9.2 vmovups %ymm0, 64+mask(%rip) #9.2 vmovups %ymm0, 96+mask(%rip) #9.2 # LOE rbx r12 r13 r14 r15 ..B1.2: # Preds ..B1.21 # Execution count [5.00e-01] xorl %edi, %edi #9.2 movl $128, %esi #9.2 movl $mask, %edx #9.2 orq $12, mask(%rip) #9.2 vzeroupper #9.2 ..___tag_value_main.6: # sched_setaffinity(__pid_t, size_t, const cpu_set_t *) call sched_setaffinity #9.2 ..___tag_value_main.7: # LOE rbx r12 r13 r14 r15 ..B1.3: # Preds ..B1.2 # Execution count [1.72e+00] movq $0xdf84757ff, %rax #12.5 movq $.L_2__STRING.1, programName(%rip) #10.2 movq $100000000, elapsed_rdtsc(%rip) #12.5 movq %rax, overal_time(%rip) #12.5 movq $0, ttime(%rip) #12.5 vmovdqu .L_2il0floatpacket.2(%rip), %ymm0 #33.21 # LOE rbx r12 r13 r14 r15 ..B1.4: # Preds ..B1.12 ..B1.3 # Execution count [2.91e+00] # Begin ASM # #mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm1 # End ASM # LOE rbx r12 r13 r14 r15 ..B1.23: # Preds ..B1.4 # Execution count [2.91e+00] vzeroupper #12.5 rdtsc #12.5 shlq $32, %rdx #12.5 orq %rdx, %rax #12.5 # LOE rax rbx r12 r13 r14 r15 ..B1.5: # Preds ..B1.23 # Execution count [2.62e+00] movq %rax, t1_rdtsc(%rip) #12.5 xorl %edx, %edx #35.5 movl $1, a(%rip) #18.5 xorl %eax, %eax #35.5 movl $3, 4+a(%rip) #21.5 movl $5, 8+a(%rip) #21.5 movl $7, 12+a(%rip) #21.5 movl $9, 16+a(%rip) #21.5 movl $11, 20+a(%rip) #21.5 movl $13, 24+a(%rip) #21.5 movl $15, 28+a(%rip) #21.5 vmovdqu .L_2il0floatpacket.2(%rip), %ymm1 #35.5 # LOE rax rbx r12 r13 r14 r15 edx ymm1 ..B1.6: # Preds ..B1.6 ..B1.5 # Execution count [4.29e+04] vpaddd a(%rax), %ymm1, %ymm0 #38.16 incl %edx #35.5 vmovdqu %ymm0, 32+a(%rax) #39.41 addq $32, %rax #35.5 cmpl $2047, %edx #35.5 jb ..B1.6 # Prob 99% #35.5 # LOE rax rbx r12 r13 r14 r15 edx ymm1 ..B1.7: # Preds ..B1.6 # Execution count [2.91e+00] vzeroupper #46.5 rdtsc #46.5 shlq $32, %rdx #46.5 orq %rdx, %rax #46.5 # LOE rax rbx r12 r13 r14 r15 ..B1.8: # Preds ..B1.7 # Execution count [2.91e+00] movq %rax, t2_rdtsc(%rip) #46.5 # LOE rbx r12 r13 r14 r15 ..B1.26: # Preds ..B1.8 # Execution count [2.91e+00] # Begin ASM # #mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm2 # End ASM # LOE rbx r12 r13 r14 r15 ..B1.25: # Preds ..B1.26 # Execution count [2.91e+00] movq t2_rdtsc(%rip), %rdx #46.5 subq t1_rdtsc(%rip), %rdx #46.5 movq ttbest_rdtsc(%rip), %rsi #46.5 movq %rdx, ttotal_rdtsc(%rip) #46.5 cmpq %rsi, %rdx #46.5 jge ..B1.10 # Prob 50% #46.5 # LOE rdx rbx rsi r12 r13 r14 r15 ..B1.9: # Preds ..B1.25 # Execution count [1.45e+00] movq elapsed_rdtsc(%rip), %rcx #46.5 movq %rcx, %rax #46.5 negq %rax #46.5 movq %rdx, %rsi #46.5 addq $100000000, %rax #46.5 movq %rdx, ttbest_rdtsc(%rip) #46.5 movq %rax, elapsed(%rip) #46.5 jmp ..B1.11 # Prob 100% #46.5 # LOE rdx rcx rbx rsi r12 r13 r14 r15 ..B1.10: # Preds ..B1.25 # Execution count [1.45e+00] movq elapsed_rdtsc(%rip), %rcx #46.5 # LOE rdx rcx rbx rsi r12 r13 r14 r15 ..B1.11: # Preds ..B1.9 ..B1.10 # Execution count [2.91e+00] movq ttime(%rip), %rax #46.5 addq %rdx, %rax #46.5 movq %rax, ttime(%rip) #46.5 testq %rcx, %rcx #46.5 je ..B1.14 # Prob 50% #46.5 # LOE rax rcx rbx rsi r12 r13 r14 r15 ..B1.12: # Preds ..B1.11 # Execution count [1.45e+00] decq %rcx #46.5 movq %rcx, elapsed_rdtsc(%rip) #46.5 cmpq overal_time(%rip), %rax #46.5 jl ..B1.4 # Prob 82% #46.5 jmp ..B1.15 # Prob 100% #46.5 # LOE rcx rbx rsi r12 r13 r14 r15 ..B1.14: # Preds ..B1.11 # Execution count [1.45e+00] movq $-1, elapsed_rdtsc(%rip) #46.5 movq $-1, %rcx #46.5 # LOE rcx rbx rsi r12 r13 r14 r15 ..B1.15: # Preds ..B1.12 ..B1.14 # Execution count [1.00e+00] negq %rcx #46.5 movl $.L_2__STRING.2, %edi #46.5 addq $100000000, %rcx #46.5 xorl %eax, %eax #46.5 movq elapsed(%rip), %rdx #46.5 ..___tag_value_main.8: # printf(const char *__restrict__, ...) call printf #46.5 ..___tag_value_main.9: # LOE rbx r12 r13 r14 r15 ..B1.16: # Preds ..B1.15 # Execution count [1.00e+00] movl $.L_2__STRING.3, %edi #46.5 movl $.L_2__STRING.4, %esi #46.5 # fopen(const char *__restrict__, const char *__restrict__) call fopen #46.5 # LOE rax rbx r12 r13 r14 r15 ..B1.17: # Preds ..B1.16 # Execution count [1.00e+00] movl $128, %ecx #46.5 movq %rax, %rdi #46.5 movq %rax, fileForSpeedups(%rip) #46.5 movl $.L_2__STRING.5, %esi #46.5 movl %ecx, %r8d #46.5 xorl %eax, %eax #46.5 movq programName(%rip), %rdx #46.5 movq ttbest_rdtsc(%rip), %r9 #46.5 # fprintf(FILE *__restrict__, const char *__restrict__, ...) call fprintf #46.5 # LOE rbx r12 r13 r14 r15 ..B1.18: # Preds ..B1.17 # Execution count [1.00e+00] xorl %eax, %eax #47.9 movq %rbp, %rsp #47.9 popq %rbp #47.9 .cfi_def_cfa 7, 8 .cfi_restore 6 ret #47.9 .align 16,0x90 # LOE .cfi_endproc # mark_end; .type main,@function .size main,.-main ..LNmain.0: .data # -- End main .bss .align 8 .align 8 .globl fileForSpeedups fileForSpeedups: .type fileForSpeedups,@object .size fileForSpeedups,8 .space 8 # pad .align 8 .globl ttime ttime: .type ttime,@object .size ttime,8 .space 8 # pad .data .align 8 .align 8 .globl programName programName: .quad .L_2__STRING.0 .type programName,@object .size programName,8 .align 8 .globl ttbest_rdtsc ttbest_rdtsc: .long 0x5d89ffff,0x01634578 .type ttbest_rdtsc,@object .size ttbest_rdtsc,8 .align 8 .globl elapsed_rdtsc elapsed_rdtsc: .long 0x05f5e100,0x00000000 .type elapsed_rdtsc,@object .size elapsed_rdtsc,8 .align 8 .globl overal_time overal_time: .long 0xf84757ff,0x0000000d .type overal_time,@object .size overal_time,8 .section .rodata, "a" .align 32 .align 32 .L_2il0floatpacket.2: .long 0x00000010,0x00000010,0x00000010,0x00000010,0x00000010,0x00000010,0x00000010,0x00000010 .type .L_2il0floatpacket.2,@object .size .L_2il0floatpacket.2,32 .section .rodata.str1.4, "aMS",@progbits,1 .align 4 .align 4 .L_2__STRING.1: .long 860047681 .byte 0 .type .L_2__STRING.1,@object .size .L_2__STRING.1,5 .space 3, 0x00 # pad .align 4 .L_2__STRING.2: .long 1701344266 .long 1936024096 .long 1936269428 .long 1819026720 .long 1852383332 .long 1819026720 .long 543716452 .long 1919251561 .long 1869182049 .long 1851859054 .long 1814372452 .long 1914725484 .long 1952804965 .long 1869182057 .long 684910 .type .L_2__STRING.2,@object .size .L_2__STRING.2,60 .align 4 .L_2__STRING.3: .long 1701603686 .long 1400008518 .long 1684366704 .long 7565429 .type .L_2__STRING.3,@object .size .L_2__STRING.3,16 .align 4 .L_2__STRING.4: .word 97 .type .L_2__STRING.4,@object .size .L_2__STRING.4,2 .space 2, 0x00 # pad .align 4 .L_2__STRING.5: .long 539783973 .long 628646949 .long 622865508 .long 174353516 .byte 0 .type .L_2__STRING.5,@object .size .L_2__STRING.5,17 .space 3, 0x00 # pad .align 4 .L_2__STRING.0: .word 32 .type .L_2__STRING.0,@object .size .L_2__STRING.0,2 .data .comm mask1,128,32 .comm t1_rdtsc,8,8 .comm t2_rdtsc,8,8 .comm ttotal_rdtsc,8,8 .comm elapsed,8,8 .comm mask,128,32 .comm a,65536,32 .section .note.GNU-stack, "" // -- Begin DWARF2 SEGMENT .eh_frame .section .eh_frame,"a",@progbits .eh_frame_seg: .align 8 # End
  3. //gcc -D _GNU_SOURCE -O3 -fno-tree-vectorize -fno-tree-slp-vectorize -march=native -c -S -o "AIC3" "AIC3.c" rdtsc salq $32, %rdx movq %r10, a(%rip) orq %rdx, %rax movq %r9, a+8(%rip) movq %r8, a+16(%rip) movq %rdi, a+24(%rip) vmovdqa a(%rip), %ymm1 movq %rax, t1_rdtsc(%rip) movl $a+32, %eax .p2align 4,,10 .p2align 3 .L2: vpaddd %ymm1, %ymm2, %ymm0 addq $32, %rax vmovdqa %ymm0, -32(%rax) vmovdqa %ymm0, %ymm1 cmpq %rax, %rcx jne .L2 rdtsc

使用icc,gcc和clang的加速比分别为~1.30,~4.10和4.00。

正如我所提到的,我用不同的编译器编译了相同的代码并记录了rdtsc。 ICC的加速并不像我预期的那样。我使用IACA来观察内部循环,汇总输出是:

//clang  -D _GNU_SOURCE -O3 -fno-vectorize -fno-slp-vectorize -march=native -c -S -o "AIC3"clang "
rdtsc
shlq    $32, %rdx
orq %rax, %rdx
movq    %rdx, t1_rdtsc(%rip)
movq    %r8, a(%rip)
movq    %r9, a+8(%rip)
movq    %r10, a+16(%rip)
movq    %rcx, a+24(%rip)
vmovdqa a(%rip), %ymm8
movl    $64, %eax
jmp .LBB0_2
.p2align    4, 0x90
.LBB0_9:                                #   in Loop: Header=BB0_2 Depth=2
    vpaddd  %ymm7, %ymm8, %ymm8
    vmovdqa %ymm8, a(,%rax,4)
    addq    $64, %rax
.LBB0_2:                                #   Parent Loop BB0_1 Depth=1
                                    # =>  This Inner Loop Header: Depth=2
    vpaddd  %ymm0, %ymm8, %ymm9
    vmovdqa %ymm9, a-224(,%rax,4)
    vpaddd  %ymm1, %ymm8, %ymm9
    vmovdqa %ymm9, a-192(,%rax,4)
    vpaddd  %ymm2, %ymm8, %ymm9
    vmovdqa %ymm9, a-160(,%rax,4)
    vpaddd  %ymm3, %ymm8, %ymm9
    vmovdqa %ymm9, a-128(,%rax,4)
    vpaddd  %ymm4, %ymm8, %ymm9
    vmovdqa %ymm9, a-96(,%rax,4)
    vpaddd  %ymm5, %ymm8, %ymm9
    vmovdqa %ymm9, a-64(,%rax,4)
    vpaddd  %ymm6, %ymm8, %ymm9
    vmovdqa %ymm9, a-32(,%rax,4)
    cmpq    $16383, %rax            # imm = 0x3FFF
    jl  .LBB0_9
# BB#3:                                 #   in Loop: Header=BB0_1 Depth=1
rdtsc

UPDATE-0:我在使用和不使用IACA生成的代码时进行了比较。在这种情况下,IACA没有帮助的原因是输出不一样。似乎注入IACA标记迫使编译器停止优化,GCC具有与ICC和Clang相同的生成代码。但是,从吞吐量的角度来看,计算GCC中的地址更有效。总之,IACA对此代码无能为力。

更新-1:----------------------------------------------------- | compilers | icc | gcc | clang | ------------------------------------------------------ | Throughput |1.49 cycle |1.00 cycle |1.49 cycle | ------------------------------------------------------ | bottleneck | Front End | dependency | Front End | ------------------------------------------------------ 的输出如下:

perf

ICC程序集输出显示512*512 ICC: 86.06 │loop: vpaddd 0x604580(%rax),%ymm1,%ymm0 0.17 │ inc %edx 4.73 │ vmovdq %ymm0,0x6045a0(%rax) │ add $0x20,%rax │ cmp $0x7fff,%edx 8.98 │ jb loop GCC: 30.62 │loop: vpaddd %ymm1,%ymm2,%ymm0 15.12 │ add $0x20,%rax 46.03 │ vmovdq %ymm0,-0x20(%rax) 2.40 │ vmovdq %ymm0,%ymm1 0.01 │ cmp %rax,%rcx 5.62 │ jne loop LLVM: 3.00 │loop: vpaddd %ymm0,%ymm7,%ymm8 6.61 │ vmovdq %ymm8,0x6020e0(,%rax,4) 15.96 │ vpaddd %ymm1,%ymm7,%ymm8 5.19 │ vmovdq %ymm8,0x602100(,%rax,4) 1.89 │ vpaddd %ymm2,%ymm7,%ymm8 6.16 │ vmovdq %ymm8,0x602120(,%rax,4) 13.25 │ vpaddd %ymm3,%ymm7,%ymm8 8.01 │ vmovdq %ymm8,0x602140(,%rax,4) 2.10 │ vpaddd %ymm4,%ymm7,%ymm8 5.37 │ vmovdq %ymm8,0x602160(,%rax,4) 13.92 │ vpaddd %ymm5,%ymm7,%ymm8 7.95 │ vmovdq %ymm8,0x602180(,%rax,4) 0.89 │ vpaddd %ymm6,%ymm7,%ymm7 4.34 │ vmovdq %ymm7,0x6021a0(,%rax,4) 2.82 │ add $0x38,%rax │ cmp $0x3ffff,%rax 2.24 │ jl loop 中有一些SIMD指令。如果我错过了什么,或者出了什么问题,我真的不知道。我花了很多时间来实现这个问题但是没有成就。如果有人知道原因帮助我,请。提前致谢。

gcc assembly x86 simd icc
1个回答
6
投票

不同的编译器实际上在这里使用相当不同的实现策略。

GCC注意到它永远不必重新加载在前一次迭代中计算的rdtsc,因此可以从寄存器中获取。这有点依赖于mov-elimination,否则reg-reg移动仍会增加一些延迟,但即使没有mov-elimination,它也会比每次重新加载快得多。

ICC的codegen非常幼稚,它就像你编写它一样。存储/重新加载会增加很多延迟。

Clang与GCC大致相同,但是按8排序(减去第一次迭代)。 Clang经常喜欢展开更多。我不确定为什么它比GCC稍微差一些。

您可以通过显式不首先执行此操作来避免重新加载:(未测试)

a[i-8]
© www.soinside.com 2019 - 2024. All rights reserved.