Linux内核模块作弊-Qemu Baremetal Xilinx Zynq A9

问题描述 投票:0回答:1

我的目标是模拟运行裸机软件的Zynq-7000上的ARM A9处理器。我已经尝试了两种不同的方法来解决这两个问题。有关如何进行的任何建议将不胜感激。

关于StackOverflow的当前答案:

链接到Linux Kernel Module Cheat(LKMC,使用v3.0)使用./build --arch arm qemu-baremetal构建

使用ARM虚拟机(-virt标志)的站点上的示例正常工作。尝试修改此设置以使其适合我的设置是导致问题的原因(以下详细信息)。

我试图复制示例命令行调用,但是使用-cpu cortex-a9选项:qemu-system-arm: mach-virt: CPU cortex-a9 not supported然后我将整个调用更改为qemu-system-arm -M xilinx-zynq-a9 -cpu cortex-a9 -nographic -kernel hello.elf -m 512M -serial mon:stdio -s -S它因错误而崩溃qemu: fatal: Trying to execute code outside RAM or ROM at 0x40000000这是有道理的,因为该应用程序是使用LKMC构建的,而我试图在该框架之外运行它。

因此,我尝试运行自己的应用程序,该应用程序是使用Xilinx工具链的修改版进行编译的。我确信它不会立即生效,因为启动顺序中的某些部分我必须更改。但是我试图弄清楚它们是什么并进行更改。与运行qemu-system-arm -M xilinx-zynq-a9 -cpu cortex-a9 -nographic -kernel helloworld.elf -m 512M -serial mon:stdio -s -S允许GDB成功连接,但无法正确读取符号表。使用arm-none-eabi-objdump -D helloworld.elf告诉我main位于0x001004fc,但是GDB认为它位于0x40000324(使用命令info address main)。

到目前为止我的工作

PYNQ-Z1(webpagedatasheet)具有32位ARM Cortex-A9处理器,因此这就是为什么我使用qemu-system-arm而不是qemu-system-aarch64的原因。如果那是错误的,有人可以纠正我。

注意,我不能简单地切换到其他体系结构;我使用的代码无法容忍更改,除了进行细微调整外,不能使板级支持软件包(BSP)与模拟器兼容,而不会损害我的研究的有效性。

我已经离开了一段时间了./run --arch arm -m 512M --baremetal pynq/helloworld --wait-gdb./run-gdb --arch arm --baremetal pynq/helloworld --no-continue -- main然后我逐步使用GDB查找哪里有数据中止,并找出Qemu不支持哪种硬件。

我正在运行的软件是使用经过修改的Xilinx工具链构建的,因此包含许多Xilinx标准库功能。到目前为止,在修改代码以使其与虚拟机一起使用时,我发现了一些更改,例如更改UART设备的地址以及禁用一些启动任务,例如使SCU无效或更改缓存控制器配置,这可能是因为这些东西不是Qemu模仿的。

[调试启动时,启动时遇到的下一个问题是XTime函数(xtime_l.c)。这些功能是读取全局系统计时器的包装器。 Qemu界面中命令info mtree的结果似乎表明没有与之交互的全局计时器设备。是否可以将计时器设备添加到ARM虚拟机?只要使用与寄存器读取和写入相同的方式在Zynq上使用它,基址是什么都无所谓。

然后我尝试使用特定的机器标志xilinx-zynq-a9。 LKMC生成以下命令:

+ /home/$USER/$INSTALL_DIR/out/qemu/default/arm-softmmu/qemu-system-arm \
  -machine xilinx-zynq-a9 \
  -gdb tcp::45457 \
  -kernel /home/$USER/$INSTALL_DIR/out/baremetal/arm/qemu/xilinx-zynq-a9/hello.elf \
  -m 512M \
  -monitor telnet::45454,server,nowait \
  -netdev user,hostfwd=tcp::45455-:45455,hostfwd=tcp::45456-:22,id=net0 \
  -no-reboot \
  -smp 1 \
  -virtfs local,path=/home/$USER/$INSTALL_DIR/data/9p,mount_tag=host_data,security_model=mapped,id=host_data \
  -virtfs local,path=/home/$USER/$INSTALL_DIR/out,mount_tag=host_out,security_model=mapped,id=host_out \
  -virtfs local,path=/home/$USER/$INSTALL_DIR/rootfs_overlay,mount_tag=host_rootfs_overlay,security_model=mapped,id=host_rootfs_overlay \
  -serial mon:stdio \
  -trace enable=load_file,file=/home/$USER/$INSTALL_DIR/out/run/qemu/arm/0/trace.bin \
  -cpu cortex-a9 \
  -device virtio-gpu-pci \
  -nographic \
  -serial tcp::45458,server,nowait \
  -semihosting \
;

此虚拟机与通用虚拟机之间的唯一区别是指定计算机和cpu的行,它们分别是-machine virt  -machine highmem=off-cpu cortex-a15(我实际上不得不修改LKMC代码以使其输出。机器的正确CPU名称)。

但是,此操作因错误而失败qemu-system-arm: -device rtl8139,netdev=net0: No 'PCI' bus found for device 'rtl8139'这是有道理的,因为并非所有Zynq部件都具有PCI总线。因此,大多数情况下,我想知道为什么当目标仍然是裸机时,LKMC为什么会生成这样的命令序列。

我认为第一种选择最有可能起作用,因为-virt机器似乎比某些特定目标有更好的支持。有趣的是,Xilinx SDK附带的Qemu版本不支持Zynq的裸机(在Xilinx Docs中称为“独立”)。

摘要:

是否可以将计时器设备添加到ARM虚拟机?有人在Qemu Xilinx ARM A9上运行裸机代码吗?

我已尝试尽可能具体,但随时可以提出澄清的问题。

arm gdb elf qemu bare-metal
1个回答
0
投票
  1. 与添加对计时器的支持相比,这可能是一项艰巨的任务设备安装到现有QEMU机器上。更具体地说,这可能不是之所以需要它是因为它们中的相当一部分都支持ARM体系结构计时器或特定的计时器硬件。在xilinx-zynq-a9的特定情况下,似乎支持从Global Timer Counter的1448页描述的Zynq-7000 Technical Reference Manual
  2. [读了几次后,我得出的结论是,您正在使用的一系列工具(KMC,工具链,QEMU)可能会出很多问题。因此,我创建了一个我希望使用我信任的手臂工具链与QEMU xilinx-zynq-a9机器一起工作的裸机应用程序的Minimal, Reproducible Example,以及使用以下内容从头开始构建的QEMU的最新版本4.2.0。我写的脚本。

请注意,为了回答您的问题,我改编了我已经可用的并且已经知道正在工作的现有个人项目。

[Building QEMU:execute build-qemu.sh-此脚本可在64位Ubuntu 18.04和19.10上运行,您必须将PERL_MODULES_VERSION设置为5.28

build-qemu.sh

#!/bin/bash

set -e 

QEMU_VERSION=4.2.0
# xenial
PERL_MODULES_VERSION=5.22
# eoan
PERL_MODULES_VERSION=5.28

# bionic
PERL_MODULES_VERSION=5.26

PREFIX=/opt/qemu-${QEMU_VERSION}

do_install_prerequisites()
{
  sudo apt-get install libglib2.0-dev libfdt-dev libpixman-1-dev zlib1g-dev libaio-dev libbluetooth-dev libbrlapi-dev libbz2-dev  libcap-dev libcap-ng-dev libcurl4-gnutls-dev libgtk-3-dev libibverbs-dev \
  libjpeg8-dev libncurses5-dev libnuma-dev librbd-dev librdmacm-dev libsasl2-dev libsdl2-dev libseccomp-dev libsnappy-dev libssh2-1-dev libvde-dev libvdeplug-dev libvte-2.91-dev libxen-dev liblzo2-dev \
  valgrind xfslibs-dev liblzma-dev flex bison texinfo perl perl-modules-${PERL_MODULES_VERSION}  python-sphinx gettext
}

do_download_qemu()
{
    if [ ! -f qemu-${QEMU_VERSION}.tar.xz ]
  then
    wget https://download.qemu.org/qemu-${QEMU_VERSION}.tar.xz
  fi
}

do_extract_qemu()
{
  echo "extracting..."
  rm -rf qemu-${QEMU_VERSION}
  tar Jxf qemu-${QEMU_VERSION}.tar.xz
}

do_configure_qemu()
{
  local TARGET_LIST="arm-softmmu"
  pushd qemu-${QEMU_VERSION}
  ./configure --target-list="${TARGET_LIST}" --prefix=${PREFIX} --extra-cflags="-I$(pwd)/packages/include" --extra-ldflags="-L$(pwd)/packages/lib" 
  popd
}


do_build_qemu()
{
  echo "building..."
  pushd qemu-${QEMU_VERSION}
  make all
  popd
}

do_install_qemu()
{
  echo "installing..."
  pushd qemu-${QEMU_VERSION}
  sudo make install
  popd
}


do_build()
{
  do_download_qemu
  do_extract_qemu
  do_configure_qemu
  do_build_qemu
  do_install_qemu
}

# main

do_install_prerequisites
do_build

在脚本完成时,您应该已安装qemu-system-user 4.2.0:

ls -gG /opt/qemu-4.2.0/bin/
total 22992
-rwxr-xr-x 1    22520 Feb 21 23:57 elf2dmp
-rwxr-xr-x 1    18424 Feb 21 23:57 ivshmem-client
-rwxr-xr-x 1   218264 Feb 21 23:57 ivshmem-server
-rwxr-xr-x 1    30864 Feb 21 23:57 qemu-edid
-rwxr-xr-x 1   374328 Feb 21 23:57 qemu-ga
-rwxr-xr-x 1  1767744 Feb 21 23:57 qemu-img
-rwxr-xr-x 1  1719104 Feb 21 23:57 qemu-io
-rwxr-xr-x 1   505016 Feb 21 23:57 qemu-keymap
-rwxr-xr-x 1  1727744 Feb 21 23:57 qemu-nbd
-rwxr-xr-x 1   599848 Feb 21 23:57 qemu-pr-helper
-rwxr-xr-x 1 16510840 Feb 21 23:57 qemu-system-arm
-rwxr-xr-x 1    26856 Feb 21 23:57 virtfs-proxy-helper

我们现在需要创建以下文件:

gcc_arm32_ram.ld(根据标准GCC CMSIS 5.60 linker script改编:

/******************************************************************************
 * @file     gcc_arm32.ld
 * @brief    GNU Linker Script for Cortex-M based device
 * @version  V2.0.0
 * @date     21. May 2019
 ******************************************************************************/
/*
 * Copyright (c) 2009-2019 Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

MEMORY
{
  RAM   (rwx) : ORIGIN = __RAM_BASE, LENGTH = __RAM_SIZE
}

/* Linker script to place sections and symbol values. Should be used together
 * with other linker script that defines memory regions FLASH and RAM.
 * It references following symbols, which must be defined in code:
 *   Reset_Handler : Entry of reset handler
 *
 * It defines following symbols, which code can use without definition:
 *   __exidx_start
 *   __exidx_end
 *   __copy_table_start__
 *   __copy_table_end__
 *   __zero_table_start__
 *   __zero_table_end__
 *   __etext
 *   __data_start__
 *   __preinit_array_start
 *   __preinit_array_end
 *   __init_array_start
 *   __init_array_end
 *   __fini_array_start
 *   __fini_array_end
 *   __data_end__
 *   __bss_start__
 *   __bss_end__
 *   __end__
 *   end
 *   __HeapLimit
 *   __StackLimit
 *   __StackTop
 *   __stack
 */
ENTRY(Reset_Handler)

SECTIONS
{
  .text :
  {
    KEEP(*(.vectors))
    *(.text*)

    KEEP(*(.init))
    KEEP(*(.fini))

    /* .ctors */
    *crtbegin.o(.ctors)
    *crtbegin?.o(.ctors)
    *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
    *(SORT(.ctors.*))
    *(.ctors)

    /* .dtors */
    *crtbegin.o(.dtors)
    *crtbegin?.o(.dtors)
    *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
    *(SORT(.dtors.*))
    *(.dtors)

    *(.rodata*)

    KEEP(*(.eh_frame*))
  } > RAM

  /*
   * SG veneers:
   * All SG veneers are placed in the special output section .gnu.sgstubs. Its start address
   * must be set, either with the command line option �--section-start� or in a linker script,
   * to indicate where to place these veneers in memory.
   */
/*
  .gnu.sgstubs :
  {
    . = ALIGN(32);
  } > RAM
*/
  .ARM.extab :
  {
    *(.ARM.extab* .gnu.linkonce.armextab.*)
  } > RAM

  __exidx_start = .;
  .ARM.exidx :
  {
    *(.ARM.exidx* .gnu.linkonce.armexidx.*)
  } > RAM
  __exidx_end = .;

  .copy.table :
  {
    . = ALIGN(4);
    __copy_table_start__ = .;
    LONG (__etext)
    LONG (__data_start__)
    LONG (__data_end__ - __data_start__)
    /* Add each additional data section here */
/*
    LONG (__etext2)
    LONG (__data2_start__)
    LONG (__data2_end__ - __data2_start__)
*/
    __copy_table_end__ = .;
  } > RAM

  .zero.table :
  {
    . = ALIGN(4);
    __zero_table_start__ = .;
    /* Add each additional bss section here */
/*
    LONG (__bss2_start__)
    LONG (__bss2_end__ - __bss2_start__)
*/
    __zero_table_end__ = .;
  } > RAM

  /**
   * Location counter can end up 2byte aligned with narrow Thumb code but
   * __etext is assumed by startup code to be the LMA of a section in RAM
   * which must be 4byte aligned 
   */
  __etext = ALIGN (4);

  .data : AT (__etext)
  {
    __data_start__ = .;
    *(vtable)
    *(.data)
    *(.data.*)

    . = ALIGN(4);
    /* preinit data */
    PROVIDE_HIDDEN (__preinit_array_start = .);
    KEEP(*(.preinit_array))
    PROVIDE_HIDDEN (__preinit_array_end = .);

    . = ALIGN(4);
    /* init data */
    PROVIDE_HIDDEN (__init_array_start = .);
    KEEP(*(SORT(.init_array.*)))
    KEEP(*(.init_array))
    PROVIDE_HIDDEN (__init_array_end = .);


    . = ALIGN(4);
    /* finit data */
    PROVIDE_HIDDEN (__fini_array_start = .);
    KEEP(*(SORT(.fini_array.*)))
    KEEP(*(.fini_array))
    PROVIDE_HIDDEN (__fini_array_end = .);

    KEEP(*(.jcr*))
    . = ALIGN(4);
    /* All data end */
    __data_end__ = .;

  } > RAM

  /*
   * Secondary data section, optional
   *
   * Remember to add each additional data section
   * to the .copy.table above to asure proper
   * initialization during startup.
   */
/*
  __etext2 = ALIGN (4);

  .data2 : AT (__etext2)
  {
    . = ALIGN(4);
    __data2_start__ = .;
    *(.data2)
    *(.data2.*)
    . = ALIGN(4);
    __data2_end__ = .;

  } > RAM2
*/

  .bss :
  {
    . = ALIGN(4);
    __bss_start__ = .;
    *(.bss)
    *(.bss.*)
    *(COMMON)
    . = ALIGN(4);
    __bss_end__ = .;
  } > RAM AT > RAM

  /*
   * Secondary bss section, optional
   *
   * Remember to add each additional bss section
   * to the .zero.table above to asure proper
   * initialization during startup.
   */
/*
  .bss2 :
  {
    . = ALIGN(4);
    __bss2_start__ = .;
    *(.bss2)
    *(.bss2.*)
    . = ALIGN(4);
    __bss2_end__ = .;
  } > RAM2 AT > RAM2
*/

  .heap (COPY) :
  {
    . = ALIGN(8);
    __end__ = .;
    PROVIDE(end = .);
    . = . + __HEAP_SIZE;
    . = ALIGN(8);
    __HeapLimit = .;
  } > RAM

  .stack (ORIGIN(RAM) + LENGTH(RAM) - __STACK_SIZE) (COPY) :
  {
    . = ALIGN(8);
    __StackLimit = .;
    . = . + __STACK_SIZE;
    . = ALIGN(8);
    __StackTop = .;
  } > RAM
  PROVIDE(__stack = __StackTop);

  /* Check if data + heap + stack exceeds RAM limit */
  ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed with stack")
}

Makefile.inc

# Shared Makefile 

.PHONY:         clean
all:            $(MACHINE).elf

$(MACHINE).elf: $(SOURCES) $(MACHINE).c
                $(CC) $(CFLAGS) $(LDFLAGS) -o $(MACHINE).elf $(MACHINE).c $(SOURCES)
                $(OBJDUMP) -d $(MACHINE).elf > $(MACHINE).lst

qemu:           $(MACHINE).elf
                $(QEMU_SYSTEM) -m 513M -nographic -machine $(MACHINE) $(QEMU_DEBUG_OPTIONS) -cpu $(CPU) -kernel $(MACHINE).elf

gdb:            $(MACHINE).elf
                $(GDB) --quiet --command=$(GDB_COMMANDS) $(MACHINE).elf

clean:
                rm -f $(MACHINE).elf $(MACHINE).lst

startup-aarch32.s

                .title startup-aarch32.s
                .arch armv7-a
                .text
                .section .text.startup,"ax"    
                .globl Reset_Handler   
Reset_Handler:
                ldr r0, =__StackTop
                mov sp, r0
                bl start
wait:           wfe
                b wait
               .end

xilinx-zynq-a9.c

#include <stdint.h>

/* Reference: https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf - page 1449.

 1. Read the upper 32-bit timer counter register
 2. Read the lower 32-bit timer counter register
 3. Read the upper 32-bit timer counter register again.
    If the value is different to the32-bit upper value read previously, go back to step 2.
    Otherwise the 64-bit timercounter value is correct.
*/

static const uintptr_t Global_Timer_Counter_Register0 = 0xF8F00200;
static const uintptr_t Global_Timer_Counter_Register1 = 0xF8F00204;

void start()
{
  uint64_t global_timer_counter = 0;
  uint32_t upper = 0;
  uint32_t upper2 = 0;
  uint32_t lower = 0;

  for (;;) {
    upper = *(volatile uint32_t*) Global_Timer_Counter_Register1;
    lower = *(volatile uint32_t*) Global_Timer_Counter_Register0;

    upper2 = *(volatile uint32_t*) Global_Timer_Counter_Register1;
    if (upper != upper2) {
        lower = *(volatile uint32_t*) Global_Timer_Counter_Register0;
    }

    global_timer_counter = (uint64_t) upper << 32 | lower;

  }
}

xilinx-zynq-a9.gdb

target remote localhost:1234
monitor reset halt
load
break Reset_Handler
break start

xilinx-zynq-a9.ld

/*
 *-------- <<< Use Configuration Wizard in Context Menu >>> -------------------
 */

/*--------------------- Embedded RAM Configuration ----------------------------
  <h> RAM Configuration
    <o0> RAM Base Address    <0x0-0xFFFFFFFF:8>
    <o1> RAM Size (in Bytes) <0x0-0xFFFFFFFF:8>
  </h>
 -----------------------------------------------------------------------------*/
__RAM_BASE = 0x00100000;
__RAM_SIZE = 0x20000000;

/*--------------------- Stack / Heap Configuration ----------------------------
  <h> Stack / Heap Configuration
    <o0> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
    <o1> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
  </h>
  -----------------------------------------------------------------------------*/
__STACK_SIZE = 0x00020000;
__HEAP_SIZE  = 0x00080000;

/*
 *-------------------- <<< end of configuration section >>> -------------------
 */

INCLUDE gcc_arm32_ram.ld

我指定了一个从0x20000000开始的512MiB DDR RAM区域-有关Zynq-7000 memory map的更多信息,请参见此处。

xilinx-zynq-a9.mak

# Toolchain
CROSS_COMPILE=/opt/arm/9/gcc-arm-9.2-2019.12-x86_64-arm-none-eabi/bin/arm-none-eabi-
CC=$(CROSS_COMPILE)gcc
OBJDUMP=$(CROSS_COMPILE)objdump
OBJCOPY=$(CROSS_COMPILE)objcopy

# Target
CPU=cortex-a9
MACHINE=xilinx-zynq-a9
CFLAGS=-O0 -ggdb -mtune=$(CPU) -nostdlib -nostartfiles -ffreestanding 
LDFLAGS=-L. -Wl,-T,$(MACHINE).ld
SOURCES=startup-aarch32.s 

# qemu
QEMU_DEBUG_OPTIONS=-S -gdb tcp::1234,ipv4
QEMU_SYSTEM=/opt/qemu-4.2.0/bin/qemu-system-arm

# GDB
GDB=$(CROSS_COMPILE)gdb
GDB_COMMANDS=${MACHINE}.gdb

include Makefile.inc

您现在需要安装latest GCC toolchain provided by arm

wget "https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-arm-none-eabi.tar.xz?revision=64186c5d-b471-4c97-a8f5-b1b300d6594a&la=en&hash=5E9204DA5AF0B055B5B0F50C53E185FAA10FF625" -o gcc-arm-9.2-2019.12-x86_64-arm-none-eabi.tar.xz
mkdir -p /opt/arm/9
tar Jxf gcc-arm-9.2-2019.12-x86_64-arm-none-eabi.tar.xz -C /opt/arm/9

您现在准备编译/执行/调试示例:

make -f xilinx-zynq-a9.mak clean all

您应该获得以下输出:

rm -f xilinx-zynq-a9.elf xilinx-zynq-a9.lst
/opt/arm/9/gcc-arm-9.2-2019.12-x86_64-arm-none-eabi/bin/arm-none-eabi-gcc -O0 -ggdb -mtune=cortex-a9 -nostdlib -nostartfiles -ffreestanding  -L. -Wl,-T,xilinx-zynq-a9.ld -o xilinx-zynq-a9.elf xilinx-zynq-a9.c startup-aarch32.s 
/opt/arm/9/gcc-arm-9.2-2019.12-x86_64-arm-none-eabi/bin/arm-none-eabi-objdump -d xilinx-zynq-a9.elf > xilinx-zynq-a9.lst

您可以启动QEMU:

make -f xilinx-zynq-a9.mak qemu

应该显示已执行的QEMU命令:

/opt/qemu-4.2.0/bin/qemu-system-arm -m 513M -nographic -machine xilinx-zynq-a9 -S -gdb tcp::1234,ipv4 -cpu cortex-a9 -kernel xilinx-zynq-a9.elf

在另一个shell中,启动GDB:

make -f xilinx-zynq-a9.mak gdb

您应该看到以下输出:

/opt/arm/9/gcc-arm-9.2-2019.12-x86_64-arm-none-eabi/bin/arm-none-eabi-gdb --quiet --command=xilinx-zynq-a9.gdb xilinx-zynq-a9.elf
Reading symbols from xilinx-zynq-a9.elf...
Reset_Handler () at startup-aarch32.s:7
7                       ldr r0, =__StackTop
unknown command: 'reset'
Loading section .text, size 0xd8 lma 0x100000
Loading section .copy.table, size 0xc lma 0x1000d8
Start address 0x1000b8, load size 228
Transfer rate: 222 KB/sec, 114 bytes/write.
Breakpoint 1 at 0x1000b8: file startup-aarch32.s, line 7.
Breakpoint 2 at 0x10000c: file xilinx-zynq-a9.c, line 17.
(gdb) 

执行continue

(gdb) continue
Continuing.

Breakpoint 2, start () at xilinx-zynq-a9.c:17
17        uint64_t global_timer_counter = 0;

现在,执行几个step命令,并在每行显示global_timer_counter变量:

31          global_timer_counter = (uint64_t) upper << 32 | lower;

已执行:

(gdb) p/x global_timer_counter
$2 = 0xa6f2a0a

(gdb) p/x global_timer_counter
$9 = 0xa84315b

(gdb)  p/x global_timer_counter
$10 = 0xabe77cf

64位变量不断增加¸,这与QEMU对Zynq全局计时器计数器的有效仿真一致,并且我们现在有了可以使用GDB调试的有效的裸机Zynq-7000示例。

我希望我回答了你问的两个问题。

© www.soinside.com 2019 - 2024. All rights reserved.