sklearn凝聚聚类连锁矩阵

问题描述 投票:27回答:3

我正在尝试画一个完整的链接scipy.cluster.hierarchy.dendrogram,我发现scipy.cluster.hierarchy.linkagesklearn.AgglomerativeClustering慢。

但是,sklearn.AgglomerativeClustering不会返回群集之间的距离和scipy.cluster.hierarchy.dendrogram需要的原始观测数量。有办法接受它们吗?

python scikit-learn cluster-analysis dendrogram
3个回答
5
投票

我创建了一个脚本,无需修改sklearn和没有递归函数。在使用注释之前:

  • 合并距离有时会相对于子合并距离减小。我添加了三种方法来处理这些情况:采取最大值,不执行任何操作或增加l2范数。 l2规范逻辑尚未得到验证。请检查自己最适合自己的。

导入包:

from sklearn.cluster import AgglomerativeClustering
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram

计算重量和距离的功能:

def get_distances(X,model,mode='l2'):
    distances = []
    weights = []
    children=model.children_
    dims = (X.shape[1],1)
    distCache = {}
    weightCache = {}
    for childs in children:
        c1 = X[childs[0]].reshape(dims)
        c2 = X[childs[1]].reshape(dims)
        c1Dist = 0
        c1W = 1
        c2Dist = 0
        c2W = 1
        if childs[0] in distCache.keys():
            c1Dist = distCache[childs[0]]
            c1W = weightCache[childs[0]]
        if childs[1] in distCache.keys():
            c2Dist = distCache[childs[1]]
            c2W = weightCache[childs[1]]
        d = np.linalg.norm(c1-c2)
        cc = ((c1W*c1)+(c2W*c2))/(c1W+c2W)

        X = np.vstack((X,cc.T))

        newChild_id = X.shape[0]-1

        # How to deal with a higher level cluster merge with lower distance:
        if mode=='l2':  # Increase the higher level cluster size suing an l2 norm
            added_dist = (c1Dist**2+c2Dist**2)**0.5 
            dNew = (d**2 + added_dist**2)**0.5
        elif mode == 'max':  # If the previrous clusters had higher distance, use that one
            dNew = max(d,c1Dist,c2Dist)
        elif mode == 'actual':  # Plot the actual distance.
            dNew = d


        wNew = (c1W + c2W)
        distCache[newChild_id] = dNew
        weightCache[newChild_id] = wNew

        distances.append(dNew)
        weights.append( wNew)
    return distances, weights

使用2个子群集制作2个群集的样本数据:

# Make 4 distributions, two of which form a bigger cluster
X1_1 = np.random.randn(25,2)+[8,1.5]
X1_2 = np.random.randn(25,2)+[8,-1.5]
X2_1 = np.random.randn(25,2)-[8,3]
X2_2 = np.random.randn(25,2)-[8,-3]

# Merge the four distributions
X = np.vstack([X1_1,X1_2,X2_1,X2_2])

# Plot the clusters
colors = ['r']*25 + ['b']*25 + ['g']*25 + ['y']*25
plt.scatter(X[:,0],X[:,1],c=colors)

样本数据:

Clusters sample data

适合群集模型

model = AgglomerativeClustering(n_clusters=2,linkage="ward")
model.fit(X)

调用函数来查找距离,并将其传递给树形图

distance, weight = get_distances(X,model)
linkage_matrix = np.column_stack([model.children_, distance, weight]).astype(float)
plt.figure(figsize=(20,10))
dendrogram(linkage_matrix)
plt.show()

输出树形图:qazxsw poi


15
投票

这是可能的,但它并不漂亮。它需要(至少)重写enter image description hereAgglomerativeClustering.fit)。困难在于该方法需要大量进口,因此最终看起来有点讨厌。要添加此功能:

  1. 在第748行之后插入以下行: kwargs ['return_distance'] =真
  2. 将第752行替换为: self.children_,self.n_components_,self.n_leaves_,parents,self.distance = \

这将为您提供一个新属性,source,您可以轻松调用。

有几点需要注意:

  1. 这样做的时候,我遇到了关于711行的distance函数的this问题。这可以通过使用check_arraycheck_arrays)来解决。您可以修改该行以成为from sklearn.utils.validation import check_arrays。这似乎是一个错误(我仍然在最新版本的scikit-learn上有这个问题)。
  2. 根据您拥有的X = check_arrays(X)[0]版本,您可能还需要将其修改为sklearn.cluster.hierarchical.linkage_tree中提供的版本。

为了让每个人都更轻松,以下是您需要使用的完整代码:

source

下面是一个简单的示例,显示如何使用修改后的from heapq import heapify, heappop, heappush, heappushpop import warnings import sys import numpy as np from scipy import sparse from sklearn.base import BaseEstimator, ClusterMixin from sklearn.externals.joblib import Memory from sklearn.externals import six from sklearn.utils.validation import check_arrays from sklearn.utils.sparsetools import connected_components from sklearn.cluster import _hierarchical from sklearn.cluster.hierarchical import ward_tree from sklearn.cluster._feature_agglomeration import AgglomerationTransform from sklearn.utils.fast_dict import IntFloatDict def _fix_connectivity(X, connectivity, n_components=None, affinity="euclidean"): """ Fixes the connectivity matrix - copies it - makes it symmetric - converts it to LIL if necessary - completes it if necessary """ n_samples = X.shape[0] if (connectivity.shape[0] != n_samples or connectivity.shape[1] != n_samples): raise ValueError('Wrong shape for connectivity matrix: %s ' 'when X is %s' % (connectivity.shape, X.shape)) # Make the connectivity matrix symmetric: connectivity = connectivity + connectivity.T # Convert connectivity matrix to LIL if not sparse.isspmatrix_lil(connectivity): if not sparse.isspmatrix(connectivity): connectivity = sparse.lil_matrix(connectivity) else: connectivity = connectivity.tolil() # Compute the number of nodes n_components, labels = connected_components(connectivity) if n_components > 1: warnings.warn("the number of connected components of the " "connectivity matrix is %d > 1. Completing it to avoid " "stopping the tree early." % n_components, stacklevel=2) # XXX: Can we do without completing the matrix? for i in xrange(n_components): idx_i = np.where(labels == i)[0] Xi = X[idx_i] for j in xrange(i): idx_j = np.where(labels == j)[0] Xj = X[idx_j] D = pairwise_distances(Xi, Xj, metric=affinity) ii, jj = np.where(D == np.min(D)) ii = ii[0] jj = jj[0] connectivity[idx_i[ii], idx_j[jj]] = True connectivity[idx_j[jj], idx_i[ii]] = True return connectivity, n_components # average and complete linkage def linkage_tree(X, connectivity=None, n_components=None, n_clusters=None, linkage='complete', affinity="euclidean", return_distance=False): """Linkage agglomerative clustering based on a Feature matrix. The inertia matrix uses a Heapq-based representation. This is the structured version, that takes into account some topological structure between samples. Parameters ---------- X : array, shape (n_samples, n_features) feature matrix representing n_samples samples to be clustered connectivity : sparse matrix (optional). connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. The matrix is assumed to be symmetric and only the upper triangular half is used. Default is None, i.e, the Ward algorithm is unstructured. n_components : int (optional) Number of connected components. If None the number of connected components is estimated from the connectivity matrix. NOTE: This parameter is now directly determined directly from the connectivity matrix and will be removed in 0.18 n_clusters : int (optional) Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. In this case, the complete tree is not computed, thus the 'children' output is of limited use, and the 'parents' output should rather be used. This option is valid only when specifying a connectivity matrix. linkage : {"average", "complete"}, optional, default: "complete" Which linkage critera to use. The linkage criterion determines which distance to use between sets of observation. - average uses the average of the distances of each observation of the two sets - complete or maximum linkage uses the maximum distances between all observations of the two sets. affinity : string or callable, optional, default: "euclidean". which metric to use. Can be "euclidean", "manhattan", or any distance know to paired distance (see metric.pairwise) return_distance : bool, default False whether or not to return the distances between the clusters. Returns ------- children : 2D array, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` n_components : int The number of connected components in the graph. n_leaves : int The number of leaves in the tree. parents : 1D array, shape (n_nodes, ) or None The parent of each node. Only returned when a connectivity matrix is specified, elsewhere 'None' is returned. distances : ndarray, shape (n_nodes-1,) Returned when return_distance is set to True. distances[i] refers to the distance between children[i][0] and children[i][1] when they are merged. See also -------- ward_tree : hierarchical clustering with ward linkage """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (-1, 1)) n_samples, n_features = X.shape linkage_choices = {'complete': _hierarchical.max_merge, 'average': _hierarchical.average_merge, } try: join_func = linkage_choices[linkage] except KeyError: raise ValueError( 'Unknown linkage option, linkage should be one ' 'of %s, but %s was given' % (linkage_choices.keys(), linkage)) if connectivity is None: from scipy.cluster import hierarchy # imports PIL if n_clusters is not None: warnings.warn('Partial build of the tree is implemented ' 'only for structured clustering (i.e. with ' 'explicit connectivity). The algorithm ' 'will build the full tree and only ' 'retain the lower branches required ' 'for the specified number of clusters', stacklevel=2) if affinity == 'precomputed': # for the linkage function of hierarchy to work on precomputed # data, provide as first argument an ndarray of the shape returned # by pdist: it is a flat array containing the upper triangular of # the distance matrix. i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] elif affinity == 'l2': # Translate to something understood by scipy affinity = 'euclidean' elif affinity in ('l1', 'manhattan'): affinity = 'cityblock' elif callable(affinity): X = affinity(X) i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] out = hierarchy.linkage(X, method=linkage, metric=affinity) children_ = out[:, :2].astype(np.int) if return_distance: distances = out[:, 2] return children_, 1, n_samples, None, distances return children_, 1, n_samples, None if n_components is not None: warnings.warn( "n_components is now directly calculated from the connectivity " "matrix and will be removed in 0.18", DeprecationWarning) connectivity, n_components = _fix_connectivity(X, connectivity) connectivity = connectivity.tocoo() # Put the diagonal to zero diag_mask = (connectivity.row != connectivity.col) connectivity.row = connectivity.row[diag_mask] connectivity.col = connectivity.col[diag_mask] connectivity.data = connectivity.data[diag_mask] del diag_mask if affinity == 'precomputed': distances = X[connectivity.row, connectivity.col] else: # FIXME We compute all the distances, while we could have only computed # the "interesting" distances distances = paired_distances(X[connectivity.row], X[connectivity.col], metric=affinity) connectivity.data = distances if n_clusters is None: n_nodes = 2 * n_samples - 1 else: assert n_clusters <= n_samples n_nodes = 2 * n_samples - n_clusters if return_distance: distances = np.empty(n_nodes - n_samples) # create inertia heap and connection matrix A = np.empty(n_nodes, dtype=object) inertia = list() # LIL seems to the best format to access the rows quickly, # without the numpy overhead of slicing CSR indices and data. connectivity = connectivity.tolil() # We are storing the graph in a list of IntFloatDict for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)): A[ind] = IntFloatDict(np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64)) # We keep only the upper triangular for the heap # Generator expressions are faster than arrays on the following inertia.extend(_hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind) del connectivity heapify(inertia) # prepare the main fields parent = np.arange(n_nodes, dtype=np.intp) used_node = np.ones(n_nodes, dtype=np.intp) children = [] # recursive merge loop for k in xrange(n_samples, n_nodes): # identify the merge while True: edge = heappop(inertia) if used_node[edge.a] and used_node[edge.b]: break i = edge.a j = edge.b if return_distance: # store distances distances[k - n_samples] = edge.weight parent[i] = parent[j] = k children.append((i, j)) # Keep track of the number of elements per cluster n_i = used_node[i] n_j = used_node[j] used_node[k] = n_i + n_j used_node[i] = used_node[j] = False # update the structure matrix A and the inertia matrix # a clever 'min', or 'max' operation between A[i] and A[j] coord_col = join_func(A[i], A[j], used_node, n_i, n_j) for l, d in coord_col: A[l].append(k, d) # Here we use the information from coord_col (containing the # distances) to update the heap heappush(inertia, _hierarchical.WeightedEdge(d, k, l)) A[k] = coord_col # Clear A[i] and A[j] to save memory A[i] = A[j] = 0 # Separate leaves in children (empty lists up to now) n_leaves = n_samples # # return numpy array for efficient caching children = np.array(children)[:, ::-1] if return_distance: return children, n_components, n_leaves, parent, distances return children, n_components, n_leaves, parent # Matching names to tree-building strategies def _complete_linkage(*args, **kwargs): kwargs['linkage'] = 'complete' return linkage_tree(*args, **kwargs) def _average_linkage(*args, **kwargs): kwargs['linkage'] = 'average' return linkage_tree(*args, **kwargs) _TREE_BUILDERS = dict( ward=ward_tree, complete=_complete_linkage, average=_average_linkage, ) def _hc_cut(n_clusters, children, n_leaves): """Function cutting the ward tree for a given number of clusters. Parameters ---------- n_clusters : int or ndarray The number of clusters to form. children : list of pairs. Length of n_nodes The children of each non-leaf node. Values less than `n_samples` refer to leaves of the tree. A greater value `i` indicates a node with children `children[i - n_samples]`. n_leaves : int Number of leaves of the tree. Returns ------- labels : array [n_samples] cluster labels for each point """ if n_clusters > n_leaves: raise ValueError('Cannot extract more clusters than samples: ' '%s clusters where given for a tree with %s leaves.' % (n_clusters, n_leaves)) # In this function, we store nodes as a heap to avoid recomputing # the max of the nodes: the first element is always the smallest # We use negated indices as heaps work on smallest elements, and we # are interested in largest elements # children[-1] is the root of the tree nodes = [-(max(children[-1]) + 1)] for i in xrange(n_clusters - 1): # As we have a heap, nodes[0] is the smallest element these_children = children[-nodes[0] - n_leaves] # Insert the 2 children and remove the largest node heappush(nodes, -these_children[0]) heappushpop(nodes, -these_children[1]) label = np.zeros(n_leaves, dtype=np.intp) for i, node in enumerate(nodes): label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i return label class AgglomerativeClustering(BaseEstimator, ClusterMixin): """ Agglomerative Clustering Recursively merges the pair of clusters that minimally increases a given linkage distance. Parameters ---------- n_clusters : int, default=2 The number of clusters to find. connectivity : array-like or callable, optional Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. This can be a connectivity matrix itself or a callable that transforms the data into a connectivity matrix, such as derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm is unstructured. affinity : string or callable, default: "euclidean" Metric used to compute the linkage. Can be "euclidean", "l1", "l2", "manhattan", "cosine", or 'precomputed'. If linkage is "ward", only "euclidean" is accepted. memory : Instance of joblib.Memory or string (optional) Used to cache the output of the computation of the tree. By default, no caching is done. If a string is given, it is the path to the caching directory. n_components : int (optional) Number of connected components. If None the number of connected components is estimated from the connectivity matrix. NOTE: This parameter is now directly determined from the connectivity matrix and will be removed in 0.18 compute_full_tree : bool or 'auto' (optional) Stop early the construction of the tree at n_clusters. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. This option is useful only when specifying a connectivity matrix. Note also that when varying the number of clusters and using caching, it may be advantageous to compute the full tree. linkage : {"ward", "complete", "average"}, optional, default: "ward" Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion. - ward minimizes the variance of the clusters being merged. - average uses the average of the distances of each observation of the two sets. - complete or maximum linkage uses the maximum distances between all observations of the two sets. pooling_func : callable, default=np.mean This combines the values of agglomerated features into a single value, and should accept an array of shape [M, N] and the keyword argument ``axis=1``, and reduce it to an array of size [M]. Attributes ---------- labels_ : array [n_samples] cluster labels for each point n_leaves_ : int Number of leaves in the hierarchical tree. n_components_ : int The estimated number of connected components in the graph. children_ : array-like, shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i` """ def __init__(self, n_clusters=2, affinity="euclidean", memory=Memory(cachedir=None, verbose=0), connectivity=None, n_components=None, compute_full_tree='auto', linkage='ward', pooling_func=np.mean): self.n_clusters = n_clusters self.memory = memory self.n_components = n_components self.connectivity = connectivity self.compute_full_tree = compute_full_tree self.linkage = linkage self.affinity = affinity self.pooling_func = pooling_func def fit(self, X, y=None): """Fit the hierarchical clustering on the data Parameters ---------- X : array-like, shape = [n_samples, n_features] The samples a.k.a. observations. Returns ------- self """ X = check_arrays(X)[0] memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory, verbose=0) if self.linkage == "ward" and self.affinity != "euclidean": raise ValueError("%s was provided as affinity. Ward can only " "work with euclidean distances." % (self.affinity, )) if self.linkage not in _TREE_BUILDERS: raise ValueError("Unknown linkage type %s." "Valid options are %s" % (self.linkage, _TREE_BUILDERS.keys())) tree_builder = _TREE_BUILDERS[self.linkage] connectivity = self.connectivity if self.connectivity is not None: if callable(self.connectivity): connectivity = self.connectivity(X) connectivity = check_arrays( connectivity, accept_sparse=['csr', 'coo', 'lil']) n_samples = len(X) compute_full_tree = self.compute_full_tree if self.connectivity is None: compute_full_tree = True if compute_full_tree == 'auto': # Early stopping is likely to give a speed up only for # a large number of clusters. The actual threshold # implemented here is heuristic compute_full_tree = self.n_clusters < max(100, .02 * n_samples) n_clusters = self.n_clusters if compute_full_tree: n_clusters = None # Construct the tree kwargs = {} kwargs['return_distance'] = True if self.linkage != 'ward': kwargs['linkage'] = self.linkage kwargs['affinity'] = self.affinity self.children_, self.n_components_, self.n_leaves_, parents, \ self.distance = memory.cache(tree_builder)(X, connectivity, n_components=self.n_components, n_clusters=n_clusters, **kwargs) # Cut the tree if compute_full_tree: self.labels_ = _hc_cut(self.n_clusters, self.children_, self.n_leaves_) else: labels = _hierarchical.hc_get_heads(parents, copy=False) # copy to avoid holding a reference on the original array labels = np.copy(labels[:n_samples]) # Reasign cluster numbers self.labels_ = np.searchsorted(np.unique(labels), labels) return self 类:

AgglomerativeClustering

该示例具有以下输出:

import numpy as np
import AgglomerativeClustering # Make sure to use the new one!!!
d = np.array(
    [
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]
    ]
)

clustering = AgglomerativeClustering(n_clusters=2, compute_full_tree=True,
    affinity='euclidean', linkage='complete')
clustering.fit(d)
print clustering.distance

然后可以将其与[ 5.19615242 10.39230485] 实现进行比较:

scipy.cluster.hierarchy.linkage

输出:

import numpy as np
from scipy.cluster.hierarchy import linkage

d = np.array(
        [
            [1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]
        ]
)
print linkage(d, 'complete')

只是为了踢,我决定跟进你关于表现的陈述:

[[  1.           2.           5.19615242   2.        ]
 [  0.           3.          10.39230485   3.        ]]

这给了我以下结果:

import AgglomerativeClustering
from scipy.cluster.hierarchy import linkage
import numpy as np
import time

l = 1000; iters = 50
d = [np.random.random(100) for _ in xrange(1000)]

t = time.time()
for _ in xrange(iters):
    clustering = AgglomerativeClustering(n_clusters=l-1,
        affinity='euclidean', linkage='complete')
    clustering.fit(d)
scikit_time = (time.time() - t) / iters
print 'scikit-learn Time: {0}s'.format(scikit_time)

t = time.time()
for _ in xrange(iters):
    linkage(d, 'complete')
scipy_time = (time.time() - t) / iters
print 'SciPy Time: {0}s'.format(scipy_time)

print 'scikit-learn Speedup: {0}'.format(scipy_time / scikit_time)

据此,Scikit-Learn的实现占SciPy实现的执行时间的0.88倍,即SciPy的实现速度提高了1.14倍。应当指出的是:

  1. 我修改了原始的scikit-learn实现
  2. 我只进行了少量的迭代
  3. 我只测试了少量的测试用例(应测试簇大小以及每个维度的项目数)
  4. 我第二次运行SciPy,因此它具有在源数据上获得更多缓存命中的优势
  5. 这两种方法并不完全相同。

考虑到所有这些,您应该真正评估哪种方法更适合您的特定应用。一个实现与另一个实现相比也有功能上的原因。


8
投票

更新:我推荐这个解决方案 - scikit-learn Time: 0.566560001373s SciPy Time: 0.497740001678s scikit-learn Speedup: 0.878530077083 ,如果你发现我的尝试有用请检查Arjun的解决方案并重新检查你的投票

您需要从children_数组生成“链接矩阵”,其中链接矩阵中的每一行都具有[idx1,idx2,distance,sample_count]格式。

这并不意味着是一个粘贴并运行的解决方案,我没有跟踪我需要导入的内容 - 但无论如何它应该非常清楚。

这是生成所需结构Z并可视化结果的一种方法

https://stackoverflow.com/a/47769506/1333621是你的X输入数据

n_samples x n_features

一些空的数据结构

agg_cluster = sklearn.cluster.AgglomerativeClustering(n_clusters=n)
agg_labels = agg_cluster.fit_predict(X)

write a recursive function to gather all leaf nodes associated with a given cluster, compute distances, and centroid positions

Z = []
# should really call this cluster dict
node_dict = {}
n_samples = len(X)

填充def get_all_children(k, verbose=False): i,j = agg_cluster.children_[k] if k in node_dict: return node_dict[k]['children'] if i < leaf_count: left = [i] else: # read the AgglomerativeClustering doc. to see why I select i-n_samples left = get_all_children(i-n_samples) if j < leaf_count: right = [j] else: right = get_all_children(j-n_samples) if verbose: print k,i,j,left, right left_pos = np.mean(map(lambda ii: X[ii], left),axis=0) right_pos = np.mean(map(lambda ii: X[ii], right),axis=0) # this assumes that agg_cluster used euclidean distances dist = metrics.pairwise_distances([left_pos,right_pos],metric='euclidean')[0,1] all_children = [x for y in [left,right] for x in y] pos = np.mean(map(lambda ii: X[ii], all_children),axis=0) # store the results to speed up any additional or recursive evaluations node_dict[k] = {'top_child':[i,j],'children':all_children, 'pos':pos,'dist':dist, 'node_i':k + n_samples} return all_children #return node_di|ct 并生成node_dict - 每个节点有距离和n_samples

Z

使用scipy树状图绘制它

for k,x in enumerate(agg_cluster.children_):   
    get_all_children(k,verbose=False)

# Every row in the linkage matrix has the format [idx1, idx2, distance, sample_count].
Z = [[v['top_child'][0],v['top_child'][1],v['dist'],len(v['children'])] for k,v in node_dict.iteritems()]
# create a version with log scaled distances for easier visualization
Z_log =[[v['top_child'][0],v['top_child'][1],np.log(1.0+v['dist']),len(v['children'])] for k,v in node_dict.iteritems()]

from scipy.cluster import hierarchy plt.figure() dn = hierarchy.dendrogram(Z_log,p=4,truncate_mode='level') plt.show()

be disappointed by how opaque this visualization is and wish you could interactively drill down into larger clusters and examine directional (not scalar) distances between centroids :( - maybe a bokeh solution exists?

references

dendrogram

http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html

© www.soinside.com 2019 - 2024. All rights reserved.