Optim.jl:负逆Hessian

问题描述 投票:9回答:3

我正在使用Optim.jl库来使用BFGS算法最小化Julia中的函数。今天,我已经向question询问了同一个库,但为了避免混淆,我决定将它分成两部分。

我想在优化后得到负逆Hessian的估计值,以便进一步计算。

在Optim库的GitHub网站上,我找到了以下工作示例:

using Optim
rosenbrock(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
result        = optimize(rosenbrock, zeros(2), BFGS())

从结果优化后,如何得到负逆Hessian?它中是否有任何字段可以识别Hessian,Inverse Hessian或负Hessian?

编辑

感谢您的评论。你认为编辑“optimize.jl”会更有效率,这样函数也会返回逆Hessian吗?请参阅下面的工作示例 - 编辑已在第226行引入:

 if state.method_string == "BFGS"
         return MultivariateOptimizationResults(state.method_string,
                                                initial_x,
                                                f_increased ? state.x_previous : state.x,
                                                f_increased ? state.f_x_previous : state.f_x,
                                                iteration,
                                                iteration == options.iterations,
                                                x_converged,
                                                options.x_tol,
                                                f_converged,
                                                options.f_tol,
                                                g_converged,
                                                options.g_tol,
                                                f_increased,
                                                tr,
                                                state.f_calls,
                                                state.g_calls,
                                                state.h_calls), state.invH
    else
         return MultivariateOptimizationResults(state.method_string,
                                                 initial_x,
                                                 f_increased ? state.x_previous : state.x,
                                                 f_increased ? state.f_x_previous : state.f_x,
                                                 iteration,
                                                 iteration == options.iterations,
                                                 x_converged,
                                                 options.x_tol,
                                                 f_converged,
                                                 options.f_tol,
                                                 g_converged,
                                                 options.g_tol,
                                                 f_increased,
                                                 tr,
                                                 state.f_calls,
                                                 state.g_calls,
                                                 state.h_calls)
     end

要不就:

return MultivariateOptimizationResults(state.method_string,
                                        initial_x,
                                        f_increased ? state.x_previous : state.x,
                                        f_increased ? state.f_x_previous : state.f_x,
                                        iteration,
                                        iteration == options.iterations,
                                        x_converged,
                                        options.x_tol,
                                        f_converged,
                                        options.f_tol,
                                        g_converged,
                                        options.g_tol,
                                        f_increased,
                                        tr,
                                        state.f_calls,
                                        state.g_calls,
                                        state.h_calls), state

在优化后完全访问“状态”。

编辑2

由于此更改将在新版本的Optim.jl库中引入,因此无需继续此讨论。现在,extended_trace和after_while!技巧工作。就个人而言,我更喜欢后者,所以我将结束讨论,给予@Dan Getz正确答案。

optimization julia
3个回答
5
投票

另一个不太理想的方法是连接到内部Optim函数after_while!,它当前什么都不做,并用它来从最后一个状态中提取信息。

在Julia代码中,这看起来像:

julia> using Optim

julia> rosenbrock(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
rosenbrock (generic function with 1 method)

julia> Optim.after_while!{T}(d, state::Optim.BFGSState{T}, method::BFGS, options)
  = global invH = state.invH

julia> result        = optimize(rosenbrock, zeros(2), BFGS())
Results of Optimization Algorithm
 * Algorithm: BFGS
 * Starting Point: [0.0,0.0]
 * Minimizer: [0.9999999926033423,0.9999999852005353]
 * Minimum: 5.471433e-17
 * Iterations: 16
 * Convergence: true
   * |x - x'| < 1.0e-32: false
   * |f(x) - f(x')| / |f(x)| < 1.0e-32: false
   * |g(x)| < 1.0e-08: true
   * f(x) > f(x'): false
   * Reached Maximum Number of Iterations: false
 * Objective Function Calls: 69
 * Gradient Calls: 69

julia> invH
2×2 Array{Float64,2}:
 0.498092  0.996422
 0.996422  1.9983  

这对于使用全局变量并且在运行/编译after_while!之前依赖于定义optimize是没有吸引力的(但可能在v0.6中已经解决了)。

正如@DSM在他的回答中所指出的,希望访问最后一个优化器状态是很自然的。如果跟踪不是答案,也许这就是。


5
投票

我知道一种方法,但是它是否值得,而不是自己估计逆Hessian,我不确定。如果你传递Optim.Options(store_trace=true, extended_trace=true),你可以获得包含last~invH的优化路径的记录。例如,之后

result = optimize(rosenbrock, zeros(2), BFGS(),
                  Optim.Options(store_trace=true, extended_trace=true));

我们可以得到

julia> result.trace[end]
    16     5.471433e-17     2.333740e-09
 * Current step size: 1.0091356566200325
 * g(x): [2.33374e-9,-1.22984e-9]
 * ~inv(H): [0.498092 0.996422; 0.996422 1.9983]
 * x: [1.0,1.0]


julia> result.trace[end].metadata["~inv(H)"]
2×2 Array{Float64,2}:
 0.498092  0.996422
 0.996422  1.9983  

但是至少有两件事我不喜欢这种方法:

第一个是打开extended_trace=true似乎强迫show_trace=true - 你会注意到我没有显示计算的输出!感觉像个臭虫。通过将show_every设置为大的,或通过完全重定向stdout来避免这种情况,可以减轻这种情况(但不会被删除)。

第二个是我们应该能够在不存储整个路径的情况下访问最后一个状态,但这是否实际上是一个问题取决于问题的大小。


1
投票

在Optim.jl中执行此操作的当前最少hacky方法是执行以下操作。

首先,加载Optim和OptimTestProblems(以便有一个例子来解决)

julia> using Optim, OptimTestProblems

julia> prob = OptimTestProblems.UnconstrainedProblems.examples["Himmelblau"]
OptimTestProblems.MultivariateProblems.OptimizationProblem{Void,Void,Float64,String,Void}("Himmelblau", OptimTestProblems.MultivariateProblems.UnconstrainedProblems.himmelblau, OptimTestProblems.MultivariateProblems.UnconstrainedProblems.himmelblau_gradient!, nothing, OptimTestProblems.MultivariateProblems.UnconstrainedProblems.himmelblau_hessian!, nothing, [2.0, 2.0], [3.0, 2.0], 0.0, true, true, nothing)

然后指定optimize需要的所有部分并以正确的顺序输入它们:

julia> x0 = prob.initial_x
2-element Array{Float64,1}:
 2.0
 2.0

julia> obj = OnceDifferentiable(prob.f, prob.g!, x0)
NLSolversBase.OnceDifferentiable{Float64,Array{Float64,1},Array{Float64,1},Val{false}}(OptimTestProblems.MultivariateProblems.UnconstrainedProblems.himmelblau, OptimTestProblems.MultivariateProblems.UnconstrainedProblems.himmelblau_gradient!, NLSolversBase.fg!, 0.0, [NaN, NaN], [NaN, NaN], [NaN, NaN], [0], [0])

julia> m = BFGS()
Optim.BFGS{LineSearches.InitialStatic{Float64},LineSearches.HagerZhang{Float64},Optim.##67#69}(LineSearches.InitialStatic{Float64}
  alpha: Float64 1.0
  scaled: Bool false
, LineSearches.HagerZhang{Float64}
  delta: Float64 0.1
  sigma: Float64 0.9
  alphamax: Float64 Inf
  rho: Float64 5.0
  epsilon: Float64 1.0e-6
  gamma: Float64 0.66
  linesearchmax: Int64 50
  psi3: Float64 0.1
  display: Int64 0
, Optim.#67, Optim.Flat())

julia> options = Optim.Options()
Optim.Options{Float64,Void}(1.0e-32, 1.0e-32, 1.0e-8, 0, 0, 0, false, 0, 1000, false, false, false, 1, nothing, NaN)

julia> bfgsstate = Optim.initial_state(m, options, obj, x0)
Optim.BFGSState{Array{Float64,1},Array{Float64,2},Float64,Array{Float64,1}}([2.0, 2.0], [6.91751e-310, 6.9175e-310], [-42.0, -18.0], NaN, [6.9175e-310, 0.0], [6.91751e-310, 0.0], [6.91751e-310, 0.0], [1.0 0.0; 0.0 1.0], [6.91751e-310, 0.0], NaN, [6.9175e-310, 6.91751e-310], 1.0, false, LineSearches.LineSearchResults{Float64}(Float64[], Float64[], Float64[], 0))

julia> res = optimize(obj, x0, m, options, bfgsstate)
Results of Optimization Algorithm
 * Algorithm: BFGS
 * Starting Point: [2.0,2.0]
 * Minimizer: [2.9999999999998894,2.000000000000162]
 * Minimum: 5.406316e-25
 * Iterations: 7
 * Convergence: true
   * |x - x'| ≤ 1.0e-32: false 
     |x - x'| = 5.81e-09 
   * |f(x) - f(x')| ≤ 1.0e-32 |f(x)|: false
     |f(x) - f(x')| = 2.93e+09 |f(x)|
   * |g(x)| ≤ 1.0e-08: true 
     |g(x)| = 4.95e-12 
   * Stopped by an increasing objective: false
   * Reached Maximum Number of Iterations: false
 * Objective Calls: 42
 * Gradient Calls: 42

然后我们可以从optimize中变异的状态访问逆Hessian。

julia> bfgsstate.invH
2×2 Array{Float64,2}:
  0.0160654   -0.00945561
 -0.00945561   0.034967  

并将其与通过计算实际Hessian的倒数得到的逆Hessian进行比较。

julia> H=similar(bfgsstate.invH)
2×2 Array{Float64,2}:
 6.91751e-310  6.91751e-310
 6.91751e-310  6.91751e-310

julia> prob.h!(H, Optim.minimizer(res))
34.00000000000832

julia> H
2×2 Array{Float64,2}:
 74.0  20.0
 20.0  34.0

julia> inv(H)
2×2 Array{Float64,2}:
  0.0160681  -0.0094518
 -0.0094518   0.0349716

这类似于在BFGS运行的最后一步获得的那个。

© www.soinside.com 2019 - 2024. All rights reserved.