比R中的mapply函数更快的方式[关闭]

问题描述 投票:-1回答:1

我最近问了一个question我得到了一个有用的答案,但考虑到我的大数据集(14K行),以下代码运行得非常慢。

如何使用像here这样的mcmapply来加快速度?

这是代码:

within(df,
  count <- mapply(function(x, y) {
    in5year <- paste(animals.2[year %in% (x-4):x], collapse = "; ")
    sum(strsplit(in5year, "; ")[[1]] %in% strsplit(y, "; ")[[1]])
  }, year, animals.1)
)
r mapply
1个回答
1
投票

使用并行的解决方案。使用mclapply而不是mcmapply,因为它更快一点。

library(parallel)
library(dplyr)
library(microbenchmark)

df = data.frame(animals.1 = c("cat; dog; bird", "dog; bird", "bird", "dog"), 
                animals.2 = c("cat; dog; bird","dog; bird; seal", "bird", ""), 
                stringsAsFactors = F)

df <- replicate(10000,{df}, simplify=F) %>% do.call(rbind, .)
df$year <- seq(2000,2000 + nrow(df) - 1)

st_func <- function(df) {
  within(df,
         count <- mapply(function(x, y) {
           in5year <- paste(animals.2[year %in% (x-4):x], collapse = "; ")
           sum(strsplit(in5year, "; ")[[1]] %in% strsplit(y, "; ")[[1]])
         }, year, animals.1)
  )
}

mc_func <- function(df) {
  df$count <- mclapply(1:nrow(df), function(i) {
    x <- df$year[i]
    y <- df$animals.1[i]
    in5year <- paste(df$animals.2[df$year %in% (x-4):x], collapse = "; ")
    sum(strsplit(in5year, "; ")[[1]] %in% strsplit(y, "; ")[[1]])
  }, mc.cores=4) %>% unlist
  return(df)
}

identical(mc_func(df), st_func(df)) # TRUE

microbenchmark(mc_func(df), st_func(df), times=5)

Unit: seconds
        expr       min        lq      mean   median        uq      max neval cld
 mc_func(df)  8.588759  8.637135  9.101409  8.91779  8.924929 10.43843     5  a 
 st_func(df) 30.090307 30.107282 30.440877 30.45653 30.696706 30.85356     5   b
© www.soinside.com 2019 - 2024. All rights reserved.