如何从二维数组中极值绘制等值线?

问题描述 投票:0回答:1

如何在极坐标图中高亮显示一个特定的轮廓值?

azi是极坐标方位角的度数(有360个值)。dev是水平方向的偏差度数(有90个值)。W是一个二维数组,形状为(90,360),数值范围为0到110。

我需要高亮显示等于90的W值,并对其进行轮廓处理。以下是我试过的代码。


a=np.radians(np.linspace(0,360,360).round()) # borehole azimuth - degrees converted to radians
d=np.radians(np.linspace(0,90,90).round())     # borehole deviation - degrees converted to radians
azi,dev=np.meshgrid(a,d)  # create numpy array 90x360 for borehole deviation
W=np.random.randint(80,100, size=(90,360))

ax2 = plt.subplot(111, projection= 'polar')  
ax2.set_theta_direction(-1)  
ax2.set_theta_zero_location("N")  
data=ax2.contourf(azi,dev, W)  
plt.contour(azi, dev, np.where(W == 90))  
plt.colorbar(data)  
plt.show()

但是,我得到了一个错误的结果:

TypeError: Input z must be at least a 2x2 array.  

我不知道如何对等于90的2D - W数组值进行轮廓和索引。

另一种解决方案可能是创建一个新的W==90值的2D数组,并对这些值进行轮廓处理。

python multidimensional-array indexing contour polar-coordinates
1个回答
1
投票
import numpy as np
import matplotlib.pyplot as plt

a=np.radians(np.linspace(0,360,360).round()) # borehole azimuth - degrees converted to radians
    d=np.radians(np.linspace(0,90,90).round())     # borehole deviation - degrees converted to radians
    azi,dip=np.meshgrid(a,d)  # create numpy array 90x360 for borehole deviation
    W=np.random.randint(80,100, size=(90,360))

# first we need to create a new 2D Numpy array (Z) from W where W=90
Z = np.zeros_like(W)
mask = np.isclose(W, 90)
Z[mask] = W[mask]

ax2 = plt.subplot(111, projection= 'polar')  
ax2.set_theta_direction(-1)  
ax2.set_theta_zero_location("N")  
data=ax2.contourf(azi,dip, W)  
plt.contour(azi, dip, Z)  # then plot contour using the new Z array
plt.colorbar(data)  
plt.show()

enter image description here

热门问题
推荐问题
最新问题