使用Python进行Quicksort

问题描述 投票:77回答:33

我是python的新手,我正在尝试实现quicksort。有人可以帮我完成我的代码吗?

我不知道如何连接三个数组并打印它们。

def sort(array=[12,4,5,6,7,3,1,15]):
    less = []
    equal = []
    greater = []

    if len(array) > 1:
        pivot = array[0]
        for x in array:
            if x < pivot:
                less.append(x)
            if x == pivot:
                equal.append(x)
            if x > pivot:
                greater.append(x)
            sort(less)
            sort(pivot)
            sort(greater)
python algorithm sorting quicksort
33个回答
213
投票
def sort(array=[12,4,5,6,7,3,1,15]):
    """Sort the array by using quicksort."""

    less = []
    equal = []
    greater = []

    if len(array) > 1:
        pivot = array[0]
        for x in array:
            if x < pivot:
                less.append(x)
            elif x == pivot:
                equal.append(x)
            elif x > pivot:
                greater.append(x)
        # Don't forget to return something!
        return sort(less)+equal+sort(greater)  # Just use the + operator to join lists
    # Note that you want equal ^^^^^ not pivot
    else:  # You need to handle the part at the end of the recursion - when you only have one element in your array, just return the array.
        return array

3
投票

分区 - 通过枢轴拆分数组,较小的元素向左移动,较大的元素向右移动,反之亦然。 pivot可以是数组中的随机元素。为了实现这个算法,我们需要知道数组的开始和结束索引是什么,以及在哪里是一个数据透视。然后设置两个辅助指针L,R。

所以我们有一个数组用户[...,begin,...,end,...]

L和R指针的起始位置 [...开始,接下来,......,最后,...] R L

而L <结束 1.如果用户[pivot]> user [L]然后将R移动一个并将用户[R]与用户[L]交换 2.将L移动一个

与用户[pivot]交换用户[R]之后

快速排序 - 使用分区算法,直到分组的每个下一部分分割开始索引大于或等于结束索引。

def qsort(user, begin, end):

    if begin >= end:
        return

    # partition
    # pivot = begin
    L = begin+1
    R = begin
    while L < end:
        if user[begin] > user[L]:
            R+=1
            user[R], user[L] = user[L], user[R]
        L+= 1
    user[R], user[begin] = user[begin], user[R]

    qsort(user, 0, R)
    qsort(user, R+1, end)

tests = [
    {'sample':[1],'answer':[1]},
    {'sample':[3,9],'answer':[3,9]},
    {'sample':[1,8,1],'answer':[1,1,8]},
    {'sample':[7,5,5,1],'answer':[1,5,5,7]},
    {'sample':[4,10,5,9,3],'answer':[3,4,5,9,10]},
    {'sample':[6,6,3,8,7,7],'answer':[3,6,6,7,7,8]},
    {'sample':[3,6,7,2,4,5,4],'answer':[2,3,4,4,5,6,7]},
    {'sample':[1,5,6,1,9,0,7,4],'answer':[0,1,1,4,5,6,7,9]},
    {'sample':[0,9,5,2,2,5,8,3,8],'answer':[0,2,2,3,5,5,8,8,9]},
    {'sample':[2,5,3,3,2,0,9,0,0,7],'answer':[0,0,0,2,2,3,3,5,7,9]}
]

for test in tests:

    sample = test['sample'][:]
    answer = test['answer']

    qsort(sample,0,len(sample))

    print(sample == answer)

2
投票
def quick_sort(self, nums):
    def helper(arr):
        if len(arr) <= 1: return arr
        #lwall is the index of the first element euqal to pivot
        #rwall is the index of the first element greater than pivot
        #so arr[lwall:rwall] is exactly the middle part equal to pivot after one round
        lwall, rwall, pivot = 0, 0, 0
        #choose rightmost as pivot
        pivot = arr[-1]
        for i, e in enumerate(arr):
            if e < pivot:
                #when element is less than pivot, shift the whole middle part to the right by 1
                arr[i], arr[lwall] = arr[lwall], arr[i]
                lwall += 1
                arr[i], arr[rwall] = arr[rwall], arr[i]
                rwall += 1
            elif e == pivot:
                #when element equals to pivot, middle part should increase by 1
                arr[i], arr[rwall] = arr[rwall], arr[i]
                rwall += 1
            elif e > pivot: continue
        return helper(arr[:lwall]) + arr[lwall:rwall] + helper(arr[rwall:])
    return helper(nums)

2
投票

这是使用Hoare分区方案的快速排序版本,具有更少的交换和局部变量

def quicksort(array):
    qsort(array, 0, len(array)-1)

def qsort(A, lo, hi):
    if lo < hi:
        p = partition(A, lo, hi)
        qsort(A, lo, p)
        qsort(A, p + 1, hi)

def partition(A, lo, hi):
    pivot = A[lo]
    i, j = lo-1, hi+1
    while True:
      i += 1
      j -= 1
      while(A[i] < pivot): i+= 1
      while(A[j] > pivot ): j-= 1

      if i >= j: 
          return j

      A[i], A[j] = A[j], A[i]


test = [21, 4, 1, 3, 9, 20, 25, 6, 21, 14]
print quicksort(test)

2
投票

我知道很多人都正确地回答了这个问题,我很喜欢阅读它们。我的回答几乎和zangw一样,但我认为之前的贡献者并没有很好地解释事物的实际工作方式......所以这是我试图帮助其他可能会在未来访问这个问题/答案的人快速实施的简单解决方案。

它是如何工作的 ?

  1. 我们基本上从列表中选择第一个项目作为我们的枢轴,然后我们创建两个子列表。
  2. 我们的第一个子列表包含少于pivot的项目
  3. 我们的第二个子列表包含大于或等于pivot的项目
  4. 然后我们快速对每一个进行排序,然后我们将它们组合成第一组+枢轴+第二组以获得最终结果。

这是一个与视觉相关的例子......(枢轴)9,11,2,0

平均值:n的n

更糟糕的情况:n ^ 2

enter image description here

代码:

def quicksort(data):
if (len(data) < 2):
    return data
else:
    pivot = data[0]  # pivot
    #starting from element 1 to the end
    rest = data[1:]
    low = [each for each in rest if each < pivot]
    high = [each for each in rest if each >= pivot]
    return quicksort(low) + [pivot] + quicksort(high)

items = [9,11,2,0] print(quicksort(items))


1
投票

或者,如果您更喜欢单线程,它也说明了C / C ++ varags,lambda表达式和if表达式的Python等价物:

qsort = lambda x=None, *xs: [] if x is None else qsort(*[a for a in xs if a<x]) + [x] + qsort(*[a for a in xs if a>=x])

1
投票
def quick_sort(array):
    return quick_sort([x for x in array[1:] if x < array[0]]) + [array[0]] \
        + quick_sort([x for x in array[1:] if x >= array[0]]) if array else []

1
投票
def Partition(A,p,q):
    i=p
    x=A[i]
    for j in range(p+1,q+1):
        if A[j]<=x:
            i=i+1
            tmp=A[j]
            A[j]=A[i]
            A[i]=tmp
    l=A[p]
    A[p]=A[i]
    A[i]=l
    return i

def quickSort(A,p,q):
    if p<q:
        r=Partition(A,p,q)
        quickSort(A,p,r-1)
        quickSort(A,r+1,q)
    return A

1
投票

一个“真正的”就地实现[算法设计和应用书籍Michael T. Goodrich和Roberto Tamassia的算法8.9,8.11]:

from random import randint

def partition (A, a, b):
    p = randint(a,b)
    # or mid point
    # p = (a + b) / 2

    piv = A[p]

    # swap the pivot with the end of the array
    A[p] = A[b]
    A[b] = piv

    i = a     # left index (right movement ->)
    j = b - 1 # right index (left movement <-)

    while i <= j:
        # move right if smaller/eq than/to piv
        while A[i] <= piv and i <= j:
            i += 1
        # move left if greater/eq than/to piv
        while A[j] >= piv and j >= i:
            j -= 1

        # indices stopped moving:
        if i < j:
            # swap
            t = A[i]
            A[i] = A[j]
            A[j] = t
    # place pivot back in the right place
    # all values < pivot are to its left and 
    # all values > pivot are to its right
    A[b] = A[i]
    A[i] = piv

    return i

def IpQuickSort (A, a, b):

    while a < b:
        p = partition(A, a, b) # p is pivot's location

        #sort the smaller partition
        if p - a < b - p:
            IpQuickSort(A,a,p-1)
            a = p + 1 # partition less than p is sorted
        else:
            IpQuickSort(A,p+1,b)
            b = p - 1 # partition greater than p is sorted


def main():
    A =  [12,3,5,4,7,3,1,3]
    print A
    IpQuickSort(A,0,len(A)-1)
    print A

if __name__ == "__main__": main()

1
投票

该算法有4个简单的步骤:

  1. 将数组分为3个不同的部分:左,枢轴和右,其中枢轴只有一个元素。让我们选择这个pivot元素作为数组的第一个元素
  2. 通过将元素与pivot元素进行比较,将元素附加到相应的部分。 (评论中的解释)
  3. 递归此算法,直到数组中的所有元素都已排序
  4. 最后,加入left + pivot + right部分

python中算法的代码:

def my_sort(A):

      p=A[0]                                       #determine pivot element. 
      left=[]                                      #create left array
      right=[]                                     #create right array
      for i in range(1,len(A)):
        #if cur elem is less than pivot, add elem in left array
        if A[i]< p:
          left.append(A[i])         
          #the recurssion will occur only if the left array is atleast half the size of original array
          if len(left)>1 and len(left)>=len(A)//2:          
              left=my_sort(left)                            #recursive call
        elif A[i]>p: 
          right.append(A[i])                                #if elem is greater than pivot, append it to right array
          if len(right)>1 and len(right)>=len(A)//2:        # recurssion will occur only if length of right array is atleast the size of original array
              right=my_sort(right)
     A=left+[p]+right                                        #append all three part of the array into one and return it
     return A

my_sort([12,4,5,6,7,3,1,15])

用左右部分递归地继续该算法。


1
投票

另一个快速实施:

# A = Array 
# s = start index
# e = end index
# p = pivot index
# g = greater than pivot boundary index

def swap(A,i1,i2):
  A[i1], A[i2] = A[i2], A[i1]

def partition(A,g,p):
    # O(n) - just one for loop that visits each element once
    for j in range(g,p):
      if A[j] <= A[p]:
        swap(A,j,g)
        g += 1

    swap(A,p,g)
    return g

def _quicksort(A,s,e):
    # Base case - we are sorting an array of size 1
    if s >= e:
      return

    # Partition current array
    p = partition(A,s,e)
    _quicksort(A,s,p-1) # Left side of pivot
    _quicksort(A,p+1,e) # Right side of pivot

# Wrapper function for the recursive one
def quicksort(A):
    _quicksort(A,0,len(A)-1)

A = [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,-1]

print(A)
quicksort(A)
print(A)

132
投票

快速排序,无需额外内存(就地)

用法:

array = [97, 200, 100, 101, 211, 107]
quicksort(array)
# array -> [97, 100, 101, 107, 200, 211]
def partition(array, begin, end):
    pivot = begin
    for i in xrange(begin+1, end+1):
        if array[i] <= array[begin]:
            pivot += 1
            array[i], array[pivot] = array[pivot], array[i]
    array[pivot], array[begin] = array[begin], array[pivot]
    return pivot



def quicksort(array, begin=0, end=None):
    if end is None:
        end = len(array) - 1
    def _quicksort(array, begin, end):
        if begin >= end:
            return
        pivot = partition(array, begin, end)
        _quicksort(array, begin, pivot-1)
        _quicksort(array, pivot+1, end)
    return _quicksort(array, begin, end)

1
投票

对于版本Python 3.x:使用operator模块的功能样式,主要用于提高可读性。

from operator import ge as greater, lt as lesser

def qsort(L): 
    if len(L) <= 1: return L
    pivot   = L[0]
    sublist = lambda op: [*filter(lambda num: op(num, pivot), L[1:])]

    return qsort(sublist(lesser))+ [pivot] + qsort(sublist(greater))

并作为测试

print (qsort([3,1,4,2,5]) == [1,2,3,4,5])

1
投票

这是一个简单的实现: -

def quicksort(array):
            if len(array) < 2:
                  return array
            else:
                  pivot= array[0]
                  less = [i for i in array[1:] if i <= pivot]

                  greater = [i for i in array[1:] if i > pivot]

                  return quicksort(less) + [pivot] + quicksort(greater)

print(quicksort([10, 5, 2, 3]))

1
投票

该算法包含两个边界,一个具有小于枢轴的元素(由索引“j”跟踪),另一个具有大于枢轴的元素(由索引“i”跟踪)。

在每次迭代中,通过递增j来处理新元素。

不变: -

  1. pivot和i之间的所有元素都小于pivot,并且
  2. i和j之间的所有元素都大于枢轴。

如果违反了不变量,则交换第i个和第j个元素,并且i递增。

在处理完所有元素之后,并且在分割了pivot之后的所有元素时,将使用小于它的最后一个元素交换pivot元素。

枢轴元素现在将在序列中的正确位置。它之前的元素将小于它,之后的元素将大于它,它们将是未分类的。

def quicksort(sequence, low, high):
    if low < high:    
        pivot = partition(sequence, low, high)
        quicksort(sequence, low, pivot - 1)
        quicksort(sequence, pivot + 1, high)

def partition(sequence, low, high):
    pivot = sequence[low]
    i = low + 1
    for j in range(low + 1, high + 1):
        if sequence[j] < pivot:
            sequence[j], sequence[i] = sequence[i], sequence[j]
            i += 1
    sequence[i-1], sequence[low] = sequence[low], sequence[i-1]
    return i - 1

def main(sequence):
    quicksort(sequence, 0, len(sequence) - 1)
    return sequence

if __name__ == '__main__':
    sequence = [-2, 0, 32, 1, 56, 99, -4]
    print(main(sequence))

选择一个支点

“良好”的枢轴将导致两个大致相同大小的子序列。确定地,可以以天真的方式选择枢轴元素或者通过计算序列的中值来选择枢轴元素。

选择枢轴的简单实现将是第一个或最后一个元素。在这种情况下,最坏情况的运行时将是输入序列已经被排序或反向排序,因为其中一个子序列将为空,这将导致每次递归调用仅删除一个元素。

当枢轴是序列的中间元素时,实现完美平衡的分割。有大量的元素和大于它的元素相同。这种方法可以确保更好的整体运行时间,但更耗时。

选择枢轴的非确定性/随机方式是随机均匀地拾取元素。这是一种简单而轻量级的方法,可以最大限度地减少最坏情况,并且还可以实现大致平衡的分割。这也将在天真的方法和选择枢轴的中位方法之间提供平衡。


1
投票

从grokking算法轻松实现

def quicksort(arr):
    if len(arr) < 2:
        return arr #base case
    else:
        pivot = arr[0]
        less = [i for i in arr[1:] if i <= pivot] 
        more = [i for i in arr[1:] if i > pivot]
        return quicksort(less) + [pivot] + quicksort(more)

0
投票
  1. 首先,我们将数组中的第一个值声明为pivot_value,并设置左右标记
  2. 我们创建了第一个while循环,这个while循环用于告诉分区进程如果不满足必要条件则再次运行
  3. 然后我们应用分区过程
  4. 在两个分区进程都运行后,我们检查它是否满足正确的条件。如果是,我们将其标记为已完成,否则我们会切换左右值并再次应用它
  5. 完成后,切换左右值并返回split_point

我附上下面的代码!由于透视值的位置,此快速排序是一个很好的学习工具。由于它处于一个恒定的位置,你可以多次遍历它,并真正了解它是如何工作的。在实践中,最好随机化枢轴以避免O(N ^ 2)运行时。

def quicksort10(alist):
    quicksort_helper10(alist, 0, len(alist)-1)

def quicksort_helper10(alist, first, last):
    """  """
    if first < last:
        split_point = partition10(alist, first, last)
        quicksort_helper10(alist, first, split_point - 1)
        quicksort_helper10(alist, split_point + 1, last)

def partition10(alist, first, last):
    done = False
    pivot_value = alist[first]
    leftmark = first + 1
    rightmark = last
    while not done:
        while leftmark <= rightmark and alist[leftmark] <= pivot_value:
            leftmark = leftmark + 1
        while leftmark <= rightmark and alist[rightmark] >= pivot_value:
            rightmark = rightmark - 1

        if leftmark > rightmark:
            done = True
        else:
            temp = alist[leftmark]
            alist[leftmark] = alist[rightmark]
            alist[rightmark] = temp
    temp = alist[first]
    alist[first] = alist[rightmark]
    alist[rightmark] = temp
    return rightmark

0
投票
def quick_sort(l):
    if len(l) == 0:
        return l
    pivot = l[0]
    pivots = [x for x in l if x == pivot]
    smaller = quick_sort([x for x in l if x < pivot])
    larger = quick_sort([x for x in l if x > pivot])
    return smaller + pivots + larger

0
投票

分区步骤中打印变量的完整示例:

def partition(data, p, right):
    print("\n==> Enter partition: p={}, right={}".format(p, right))
    pivot = data[right]
    print("pivot = data[{}] = {}".format(right, pivot))

    i = p - 1  # this is a dangerous line

    for j in range(p, right):
        print("j: {}".format(j))
        if data[j] <= pivot:
            i = i + 1
            print("new i: {}".format(i))
            print("swap: {} <-> {}".format(data[i], data[j]))
            data[i], data[j] = data[j], data[i]

    print("swap2: {} <-> {}".format(data[i + 1], data[right]))
    data[i + 1], data[right] = data[right], data[i + 1]
    return i + 1


def quick_sort(data, left, right):
    if left < right:
        pivot = partition(data, left, right)
        quick_sort(data, left, pivot - 1)
        quick_sort(data, pivot + 1, right)

data = [2, 8, 7, 1, 3, 5, 6, 4]

print("Input array: {}".format(data))
quick_sort(data, 0, len(data) - 1)
print("Output array: {}".format(data))

0
投票
def is_sorted(arr): #check if array is sorted
    for i in range(len(arr) - 2):
        if arr[i] > arr[i + 1]:
            return False
    return True

def qsort_in_place(arr, left, right): #arr - given array, #left - first element index, #right - last element index
    if right - left < 1: #if we have empty or one element array - nothing to do
        return
    else:
        left_point = left #set left pointer that points on element that is candidate to swap with element under right pointer or pivot element
        right_point = right - 1 #set right pointer that is candidate to swap with element under left pointer

        while left_point <= right_point: #while we have not checked all elements in the given array
            swap_left = arr[left_point] >= arr[right] #True if we have to move that element after pivot
            swap_right = arr[right_point] < arr[right] #True if we have to move that element before pivot

            if swap_left and swap_right: #if both True we can swap elements under left and right pointers
                arr[right_point], arr[left_point] = arr[left_point], arr[right_point]
                left_point += 1
                right_point -= 1
            else: #if only one True we don`t have place for to swap it
                if not swap_left: #if we dont need to swap it we move to next element
                    left_point += 1
                if not swap_right: #if we dont need to swap it we move to prev element
                    right_point -= 1

        arr[left_point], arr[right] = arr[right], arr[left_point] #swap left element with pivot

        qsort_in_place(arr, left, left_point - 1) #execute qsort for left part of array (elements less than pivot)
        qsort_in_place(arr, left_point + 1, right) #execute qsort for right part of array (elements most than pivot)

def main():
    import random
    arr = random.sample(range(1, 4000), 10) #generate random array
    print(arr)
    print(is_sorted(arr))
    qsort_in_place(arr, 0, len(arr) - 1)
    print(arr)
    print(is_sorted(arr))

if __name__ == "__main__":
    main()

0
投票
# 编程珠玑实现
# 双向排序: 提高非随机输入的性能
# 不需要额外的空间,在待排序数组本身内部进行排序
# 基准值通过random随机选取
# 入参: 待排序数组, 数组开始索引 0, 数组结束索引 len(array)-1
import random

def swap(arr, l, u):
    arr[l],arr[u] = arr[u],arr[l]
    return arr

def QuickSort_Perl(arr, l, u):
    # 小数组排序i可以用插入或选择排序 
    # if u-l < 50 : return arr
    # 基线条件: low index = upper index; 也就是只有一个值的区间
    if l >= u:
        return arr
    # 随机选取基准值, 并将基准值替换到数组第一个元素        
    swap(arr, l, int(random.uniform(l, u)))
    temp = arr[l]
    # 缓存边界值, 从上下边界同时排序
    i, j = l, u
    while True:
        # 第一个元素是基准值,所以要跳过
        i+=1
        # 在小区间中, 进行排序
        # 从下边界开始寻找大于基准值的索引
        while i <= u and arr[i] <= temp:
            i += 1
        # 从上边界开始寻找小于基准值的索引
        # 因为j肯定大于i, 所以索引值肯定在小区间中
        while arr[j] > temp:
            j -= 1
        # 如果小索引仍小于大索引, 调换二者位置
        if i >= j:
            break
        arr[i], arr[j] = arr[j], arr[i]
    # 将基准值的索引从下边界调换到索引分割点
    swap(arr, l, j)
    QuickSort_Perl(arr, l, j-1)
    QuickSort_Perl(arr, j+1, u)
    return arr

print('QuickSort_Perl([-22, -21, 0, 1, 2, 22])',
    QuickSort_Perl([-22, -21, 0, 1, 2, 22], 0, 5))

0
投票

该算法不使用递归函数。

N成为len(N) > 0的任何数字列表。设置K = [N]并执行以下程序。

注意:这是一个stable排序算法。

def BinaryRip2Singletons(K, S):
    K_L = []
    K_P = [ [K[0][0]] ] 
    K_R = []
    for i in range(1, len(K[0])):
        if   K[0][i] < K[0][0]:
            K_L.append(K[0][i])
        elif K[0][i] > K[0][0]:
            K_R.append(K[0][i])
        else:
            K_P.append( [K[0][i]] )
    K_new = [K_L]*bool(len(K_L)) + K_P + [K_R]*bool(len(K_R)) + K[1:]
    while len(K_new) > 0:
        if len(K_new[0]) == 1:
            S.append(K_new[0][0])
            K_new = K_new[1:]
        else: 
            break
    return K_new, S

N = [16, 19, 11, 15, 16, 10, 12, 14, 4, 10, 5, 2, 3, 4, 7, 1]
K = [ N ]
S = []

print('K =', K, 'S =', S)
while len(K) > 0:
    K, S = BinaryRip2Singletons(K, S)
    print('K =', K, 'S =', S)

计划产出:

K = [[16, 19, 11, 15, 16, 10, 12, 14, 4, 10, 5, 2, 3, 4, 7, 1]] S = []
K = [[11, 15, 10, 12, 14, 4, 10, 5, 2, 3, 4, 7, 1], [16], [16], [19]] S = []
K = [[10, 4, 10, 5, 2, 3, 4, 7, 1], [11], [15, 12, 14], [16], [16], [19]] S = []
K = [[4, 5, 2, 3, 4, 7, 1], [10], [10], [11], [15, 12, 14], [16], [16], [19]] S = []
K = [[2, 3, 1], [4], [4], [5, 7], [10], [10], [11], [15, 12, 14], [16], [16], [19]] S = []
K = [[5, 7], [10], [10], [11], [15, 12, 14], [16], [16], [19]] S = [1, 2, 3, 4, 4]
K = [[15, 12, 14], [16], [16], [19]] S = [1, 2, 3, 4, 4, 5, 7, 10, 10, 11]
K = [[12, 14], [15], [16], [16], [19]] S = [1, 2, 3, 4, 4, 5, 7, 10, 10, 11]
K = [] S = [1, 2, 3, 4, 4, 5, 7, 10, 10, 11, 12, 14, 15, 16, 16, 19]

67
投票

还有另一个简洁而美丽的版本

def qsort(arr): 
    if len(arr) <= 1:
        return arr
    else:
        return qsort([x for x in arr[1:] if x < arr[0]]) + \
               [arr[0]] + \
               qsort([x for x in arr[1:] if x >= arr[0]])

# this comment is just to improve readability due to horizontal scroll!!!

让我解释一下上面的代码细节

  1. 选择数组arr[0]的第一个元素作为pivot [arr[0]]
  2. qsort那些与List Comprehension不太相关的数组元素 qsort([x for x in arr[1:] if x < arr[0]])
  3. qsort那些比List Comprehension更大的数组元素 qsort([x for x in arr[1:] if x >= arr[0]])

-1
投票
def quick_sort(list):
    if len(list) ==0:
        return []

    return  quick_sort(filter( lambda item: item < list[0],list)) + [v for v in list if v==list[0] ]  +  quick_sort( filter( lambda item: item > list[0], list))

29
投票

如果我在Google中搜索“python quicksort implementation”,这个问题就是弹出的第一个结果。我理解最初的问题是“帮助纠正代码”但是已经有许多答案无视这个请求:当前的second most voted one,可怕的one-liner与热闹的“你被解雇”评论,并且,一般来说,许多实现是不到位(即使用与输入列表大小成比例的额外内存)。 This answer提供了一个就地解决方案,但它适用于python 2.x。因此,下面是我对Rosetta Code的就地解决方案的解释,它也适用于python 3

import random

def qsort(l, fst, lst):
    if fst >= lst: return

    i, j = fst, lst
    pivot = l[random.randint(fst, lst)]

    while i <= j:
        while l[i] < pivot: i += 1
        while l[j] > pivot: j -= 1
        if i <= j:
            l[i], l[j] = l[j], l[i]
            i, j = i + 1, j - 1
    qsort(l, fst, j)
    qsort(l, i, lst)

如果你愿意放弃就地财产,下面是另一个更好地说明quicksort背后的基本思想的版本。除了可读性之外,它的另一个优点是它是稳定的(相同的元素以与它们在未排序列表中相同的顺序出现在排序列表中)。这种稳定性属性不适用于上面提到的内存消耗较少的就地实现。

def qsort(l):
    if not l: return l # empty sequence case
    pivot = l[random.choice(range(0, len(l)))]

    head = qsort([elem for elem in l if elem < pivot])
    tail = qsort([elem for elem in l if elem > pivot])
    return head + [elem for elem in l if elem == pivot] + tail

21
投票

已经有很多答案,但我认为这种方法是最干净的实现:

def quicksort(arr):
    """ Quicksort a list

    :type arr: list
    :param arr: List to sort
    :returns: list -- Sorted list
    """
    if not arr:
        return []

    pivots = [x for x in arr if x == arr[0]]
    lesser = quicksort([x for x in arr if x < arr[0]])
    greater = quicksort([x for x in arr if x > arr[0]])

    return lesser + pivots + greater

您当然可以跳过将所有内容存储在变量中并将其直接返回,如下所示:

def quicksort(arr):
    """ Quicksort a list

    :type arr: list
    :param arr: List to sort
    :returns: list -- Sorted list
    """
    if not arr:
        return []

    return quicksort([x for x in arr if x < arr[0]]) \
        + [x for x in arr if x == arr[0]] \
        + quicksort([x for x in arr if x > arr[0]])

20
投票

Quicksort with Python

在现实生活中,我们应该始终使用Python提供的内置类型。但是,了解quicksort算法是有益的。

我的目标是打破主题,使读者易于理解和复制,而无需返回参考资料。

快速排序算法基本上如下:

  1. 选择透视数据点。
  2. 将小于(下方)枢轴的所有数据点移动到枢轴下方的位置 - 将大于或等于(上方)枢轴的数据点移动到其上方的位置。
  3. 将算法应用于枢轴上方和下方的区域

如果数据是随机分布的,则选择第一个数据点作为枢轴等同于随机选择。

可读示例:

首先,让我们看一个使用注释和变量名称指向中间值的可读示例:

def quicksort(xs):
    """Given indexable and slicable iterable, return a sorted list"""
    if xs: # if given list (or tuple) with one ordered item or more: 
        pivot = xs[0]
        # below will be less than:
        below = [i for i in xs[1:] if i < pivot] 
        # above will be greater than or equal to:
        above = [i for i in xs[1:] if i >= pivot]
        return quicksort(below) + [pivot] + quicksort(above)
    else: 
        return xs # empty list

要重述此处演示的算法和代码 - 我们将数值移动到枢轴上方的右侧,并将值移动到左侧的数据集下方,然后将这些分区传递给相同的函数以进一步排序。

Golfed:

这可以打高尔夫球到88个字符:

q=lambda x:x and q([i for i in x[1:]if i<=x[0]])+[x[0]]+q([i for i in x[1:]if i>x[0]])

要了解我们如何实现这一目标,请先阅读我们的可读示例,删除注释和文档字符串,然后找到就地支点:

def quicksort(xs):
    if xs: 
        below = [i for i in xs[1:] if i < xs[0]] 
        above = [i for i in xs[1:] if i >= xs[0]]
        return quicksort(below) + [xs[0]] + quicksort(above)
    else: 
        return xs

现在找到以下,就地:

def quicksort(xs):
    if xs: 
        return (quicksort([i for i in xs[1:] if i < xs[0]] )
                + [xs[0]] 
                + quicksort([i for i in xs[1:] if i >= xs[0]]))
    else: 
        return xs

现在,知道and返回前一个元素,如果为false,否则如果为true,则计算并返回以下元素,我们有:

def quicksort(xs):
    return xs and (quicksort([i for i in xs[1:] if i < xs[0]] )
                   + [xs[0]] 
                   + quicksort([i for i in xs[1:] if i >= xs[0]]))

由于lambdas返回单个表达式,并且我们已经简化为单个表达式(即使它变得越来越难以理解),我们现在可以使用lambda:

quicksort = lambda xs: (quicksort([i for i in xs[1:] if i < xs[0]] )
                        + [xs[0]] 
                        + quicksort([i for i in xs[1:] if i >= xs[0]]))

并且为了简化我们的示例,将函数和变量名称缩短为一个字母,并消除不需要的空格。

q=lambda x:x and q([i for i in x[1:]if i<=x[0]])+[x[0]]+q([i for i in x[1:]if i>x[0]])

请注意,这个lambda与大多数代码打高尔夫球一样,风格相当糟糕。

就地Quicksort,使用Hoare分区方案

先前的实现创建了许多不必要的额外列表。如果我们能够就地做到这一点,我们将避免浪费空间。

下面的实现使用Hoare分区方案,你可以read more about on wikipedia(但我们显然通过使用while循环语义而不是do-while并将缩小步骤移动到外部结束时每个partition()调用最多删除4个冗余计算环。)。

def quicksort(a_list):
    """Hoare partition scheme, see https://en.wikipedia.org/wiki/Quicksort"""
    def _quicksort(a_list, low, high):
        # must run partition on sections with 2 elements or more
        if low < high: 
            p = partition(a_list, low, high)
            _quicksort(a_list, low, p)
            _quicksort(a_list, p+1, high)
    def partition(a_list, low, high):
        pivot = a_list[low]
        while True:
            while a_list[low] < pivot:
                low += 1
            while a_list[high] > pivot:
                high -= 1
            if low >= high:
                return high
            a_list[low], a_list[high] = a_list[high], a_list[low]
            low += 1
            high -= 1
    _quicksort(a_list, 0, len(a_list)-1)
    return a_list

不确定我是否彻底测试过:

def main():
    assert quicksort([1]) == [1]
    assert quicksort([1,2]) == [1,2]
    assert quicksort([1,2,3]) == [1,2,3]
    assert quicksort([1,2,3,4]) == [1,2,3,4]
    assert quicksort([2,1,3,4]) == [1,2,3,4]
    assert quicksort([1,3,2,4]) == [1,2,3,4]
    assert quicksort([1,2,4,3]) == [1,2,3,4]
    assert quicksort([2,1,1,1]) == [1,1,1,2]
    assert quicksort([1,2,1,1]) == [1,1,1,2]
    assert quicksort([1,1,2,1]) == [1,1,1,2]
    assert quicksort([1,1,1,2]) == [1,1,1,2]

结论

该算法经常在计算机科学课程中教授,并要求进行面试。它有助于我们思考递归和分而治之。

Quicksort在Python中不太实用,因为我们的内置timsort算法非常有效,并且我们有递归限制。我们希望使用list.sort对列表进行排序或使用sorted创建新的排序列表 - 两者都采用keyreverse参数。


6
投票

功能方法:

def qsort(list):
    if len(list) < 2:
        return list

    pivot = list.pop()
    left = filter(lambda x: x <= pivot, list)
    right = filter(lambda x: x > pivot, list)

    return qsort(left) + [pivot] + qsort(right)

4
投票

函数式编程方法

smaller = lambda xs, y: filter(lambda x: x <= y, xs)
larger = lambda xs, y: filter(lambda x: x > y, xs)
qsort = lambda xs: qsort(smaller(xs[1:],xs[0])) + [xs[0]] + qsort(larger(xs[1:],xs[0])) if xs != [] else []

print qsort([3,1,4,2,5]) == [1,2,3,4,5]

3
投票

我认为这里的答案都适用于所提供的列表(回答原始问题),但如果传递包含非唯一值的数组则会中断。所以为了完整性,我只想指出每个中的小错误并解释如何解决它们。

例如,尝试使用Brionius算法对以下数组[12,4,5,6,7,3,1,15,1](注意1出现两次)进行排序..在某些时候最终将使用较少的数组为空和相等的数组有一对值(1,1),在下一次迭代中不能分开,len()> 1 ...因此你最终会得到一个无限循环

您可以通过返回数组来修复它,如果less为空或更好,不要在相等的数组中调用sort,如zangw中的答案

def sort(array=[12,4,5,6,7,3,1,15]):
    less = []
    equal = []
    greater = []

    if len(array) > 1:
        pivot = array[0]
        for x in array:
            if x < pivot:
                less.append(x)
            if x == pivot:
                equal.append(x)
            if x > pivot:
                greater.append(x)

        # Don't forget to return something!
        return sort(less)+ equal +sort(greater)  # Just use the + operator to join lists
    # Note that you want equal ^^^^^ not pivot
    else:  # You need to hande the part at the end of the recursion - when you only have one element in your array, just return the array.
        return array

更高级的解决方案也会中断,但是由于不同的原因,它在递归行中缺少return子句,这将导致在某些时候返回None并尝试将其附加到列表....

要修复它,只需在该行添加一个返回

def qsort(arr): 
   if len(arr) <= 1:
      return arr
   else:
      return qsort([x for x in arr[1:] if x<arr[0]]) + [arr[0]] + qsort([x for x in arr[1:] if x>=arr[0]])
© www.soinside.com 2019 - 2024. All rights reserved.