Fortran中使用FFTW的r2r型三维正弦变换的泊松方程求解器

问题描述 投票:2回答:1

我在Fortran中编写了以下代码,使用r2r(实数到真实)类型的FFTW sin变换来求解泊松方程。在这段代码中,首先我完成了正常的FFTW,即数学函数27*sin(3x)*sin(3y)*sin(3z)的r2c(实数到复数)类型,然后将其除以27(3 * 3 + 3 * 3 + 3 * 3)以计算输入函数的二阶导数。输入函数幅度的三维图表显示其正确的幅度.amplitude along z-axis against x-,y- co-ordinate。 然后,c2r(复数到实数)类型的逆FFTW重新生成输入函数,但幅度现在减小到1,如3-D曲线2所示。这说明我的泊松方程求解器代码在正常FFTW的情况下工作正常。

Program Derivative

! To run this code: gcc dst_3d.c -c -std=c99 && gfortran derivative.f95 dst_3d.o -lfftw3 && ./a.out

implicit none

include "fftw3.f"

integer ( kind = 4 ), parameter :: Nx = 64
integer ( kind = 4 ), parameter :: Ny = 64
integer ( kind = 4 ), parameter :: Nz = 64

real ( kind = 8 ), parameter :: pi=3.14159265358979323846d0

integer ( kind = 4 ) i,j,k
real ( kind = 8 ) Lx,Ly,Lz,dx,dy,dz,kx,ky,kz
real ( kind = 8 ) x(Nx),y(Ny),z(Nz)

real ( kind = 8 ) in_dst(Nx,Ny,Nz),out_dst(Nx,Ny,Nz) ! DST
real ( kind = 8 ) in_k_dst(Nx,Ny,Nz),out_k_dst(Nx,Ny,Nz) ! DST

real ( kind = 8 ) in_dft(Nx,Ny,Nz),out_dft(Nx,Ny,Nz) ! DFT
complex ( kind = 8 ) in_k_dft(Nx/2+1,Ny,Nz),out_k_dft(Nx/2+1,Ny,Nz) ! DFT
integer ( kind = 8 ) plan_forward,plan_backward ! DFT

! System Size.
Lx = 2.0d0*pi; Ly = 2.0d0*pi; Lz = 2.0d0*pi 

! Grid Resolution.
dx = Lx/dfloat(Nx); dy = Ly/dfloat(Ny); dz = Lz/dfloat(Nz)

! =================================== INPUT ===========================================

! Initial Profile Details.
do i = 1, Nx
  x(i) = dfloat(i-1)*dx
  do j = 1, Ny
    y(j) = dfloat(j-1)*dy
    do k = 1, Nz
      z(k) = dfloat(k-1)*dz
      in_dst(i,j,k) = 27.0d0*sin(3.0d0*x(i))*sin(3.0d0*y(j))*sin(3.0d0*z(k))
      in_dft(i,j,k) = in_dst(i,j,k)
      write(10,*) x(i), y(j), z(k), in_dft(i,j,k)
    enddo
  enddo
enddo

! =================================== 3D DFT ===========================================

  call dfftw_plan_dft_r2c_3d_ (plan_forward, Nx, Ny, Nz, in_dft, in_k_dft, FFTW_ESTIMATE)
  call dfftw_execute_ (plan_forward)
  call dfftw_destroy_plan_ (plan_forward)

do i = 1, Nx/2+1
  do j = 1, Ny/2
    do k = 1, Nz/2
      kx = 2.0d0*pi*dfloat(i-1)/Lx
      ky = 2.0d0*pi*dfloat(j-1)/Ly
      kz = 2.0d0*pi*dfloat(k-1)/Lz
      out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo 
    do k = Nz/2+1, Nz
      kx = 2.0d0*pi*dfloat(i-1)/Lx
      ky = 2.0d0*pi*dfloat(j-1)/Ly
      kz = 2.0d0*pi*dfloat((k-1)-Nz)/Lz
      out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
  enddo
  do j = Ny/2+1, Ny
    do k = 1, Nz/2
      kx = 2.0d0*pi*dfloat(i-1)/Lx
      ky = 2.0d0*pi*dfloat((j-1)-Ny)/Ly
      kz = 2.0d0*pi*dfloat(k-1)/Lz
      out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
    do k = Nz/2+1, Nz
      kx = 2.0d0*pi*dfloat(i-1)/Lx
      ky = 2.0d0*pi*dfloat((j-1)-Ny)/Ly
      kz = 2.0d0*pi*dfloat((k-1)-Nz)/Lz
      out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
  enddo   
enddo

out_k_dft(1,1,1) = in_k_dft(1,1,1)

  call dfftw_plan_dft_c2r_3d_ (plan_backward, Nx, Ny, Nz, out_k_dft, out_dft, FFTW_ESTIMATE)
  call dfftw_execute_ (plan_backward)
  call dfftw_destroy_plan_ (plan_backward)

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    out_dft(i,j,k) = out_dft(i,j,k)/dfloat(Nx*Ny*Nz)
    write(20,*) x(i), y(j), z(k), out_dft(i,j,k)    
    enddo
  enddo   
enddo

! =================================== 3D DST ===========================================

  call Forward_FFT(Nx, Ny, Nz, in_dst, in_k_dst)

do k = 1, Nz
  do j = 1, Ny/2
    do i = 1, Nx/2
      kz = 2.0d0*pi*dfloat((k-1))/Lz
      ky = 2.0d0*pi*dfloat((j-1))/Ly
      kx = 2.0d0*pi*dfloat((i-1))/Lx
      out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo 
    do i = Nx/2+1, Nx
      kz = 2.0d0*pi*dfloat((k-1))/Lz
      ky = 2.0d0*pi*dfloat((j-1))/Ly
      kx = 2.0d0*pi*dfloat(Nx-(i-1))/Lx
      out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
  enddo  
  do j = Ny/2+1, Ny
    do i = 1, Nx/2
      kz = 2.0d0*pi*dfloat((k-1))/Lz
      ky = 2.0d0*pi*dfloat(Ny-(j-1))/Ly
      kx = 2.0d0*pi*dfloat((i-1))/Lx
      out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
    do i = Nx/2+1, Nx
      kz = 2.0d0*pi*dfloat((k-1))/Lz
      ky = 2.0d0*pi*dfloat(Ny-(j-1))/Ly
      kx = 2.0d0*pi*dfloat(Nx-(i-1))/Lx
      out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
    enddo
  enddo   
enddo

out_k_dst(1,1,1) = in_k_dst(1,1,1)

  call Backward_FFT(Nx, Ny, Nz, out_k_dst, out_dst)  

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    out_dst(i,j,k) = out_dst(i,j,k)/dfloat(8*Nx*Ny*Nz)
    write(30,*) x(i), y(j), z(k), out_dst(i,j,k)
    enddo
  enddo   
enddo

end program Derivative

! ================================== FFTW SUBROUTINES 
====================================================

! ================================================================= !
! Wrapper Subroutine to call forward fftw c functions for 3d arrays !
! ================================================================= !

subroutine Forward_FFT(Nx, Ny, Nz, in, out)
implicit none
integer ( kind = 4 ) Nx,Ny,Nz,i,j,k
real ( kind = 8 ) in(Nx, Ny, Nz),out(Nx, Ny, Nz),dum(Nx*Ny*Nz)

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    dum(((i-1)*Ny+(j-1))*Nz+k) = in(i,j,k)
    enddo
  enddo
enddo

  call dst3f(Nx, Ny, Nz, dum)

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    out(i,j,k) = dum(((i-1)*Ny+(j-1))*Nz+k)
    enddo
  enddo
enddo

end subroutine

! ================================================================== !
! Wrapper Subroutine to call backward fftw c functions for 3d arrays !
! ================================================================== !

subroutine Backward_FFT(Nx, Ny, Nz, in, out)
implicit none
integer ( kind = 4 ) Nx,Ny,Nz,i,j,k
real ( kind = 8 ) in(Nx, Ny, Nz),out(Nx, Ny, Nz),dum(Nx*Ny*Nz)

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    dum(((i-1)*Ny+(j-1))*Nz+k) = in(i,j,k)
    enddo
  enddo
enddo

  call dst3b(Nx, Ny, Nz, dum)

do i = 1, Nx
  do j = 1, Ny
    do k = 1, Nz
    out(i,j,k) = dum(((i-1)*Ny+(j-1))*Nz+k)
    enddo
  enddo
enddo

end subroutine
! ==================================================================

此代码使用下面的C-wrapper来计算前向3D FFTW正弦变换和后向3D FFTW正弦变换,

#include <fftw3.h>

int dst3f_(int *n0, int *n1, int *n2, double *in3cs)
{
    double *out3cs;
    out3cs = (double*) fftw_malloc(sizeof(double) * (*n0) * (*n1) * (*n2));
    fftw_plan p3cs;
    p3cs = fftw_plan_r2r_3d(*n0, *n1, *n2, in3cs, out3cs, FFTW_RODFT10, FFTW_RODFT10, FFTW_RODFT10, FFTW_ESTIMATE);

    fftw_execute(p3cs);
    fftw_destroy_plan(p3cs);

    for(int i0=0;i0<*n0;i0++) {
        for(int i1=0;i1<*n1;i1++) {
            for(int i2=0;i2<*n2;i2++) {
                in3cs[(i0*(*n1)+i1)*(*n2)+i2] = out3cs[(i0*(*n1)+i1)*(*n2)+i2];
            }
        }
    }

    return 0;
}

int dst3b_(int *n0, int *n1, int *n2, double *in3cs)
{
    double *out3cs;
    out3cs = (double*) fftw_malloc(sizeof(double) * (*n0) * (*n1) * (*n2));
    fftw_plan p3cs;
    p3cs = fftw_plan_r2r_3d(*n0, *n1, *n2, in3cs, out3cs, FFTW_RODFT01, FFTW_RODFT01, FFTW_RODFT01, FFTW_ESTIMATE);

    fftw_execute(p3cs);
    fftw_destroy_plan(p3cs);

    for(int i0=0;i0<*n0;i0++) {
        for(int i1=0;i1<*n1;i1++) {
            for(int i2=0;i2<*n2;i2++) {
                in3cs[(i0*(*n1)+i1)*(*n2)+i2] = out3cs[(i0*(*n1)+i1)*(*n2)+i2];
            }
        }
    }

    return 0;
}

然后我尝试使用正弦变换FFTW即r2r(真实到真实)类型来解决相同的泊松方程。当我在这里显示3的三维输出图时,幅度现在减小到小于1.我无法找出代码中的错误在哪里,因为在正弦变换的情况下这个幅度减小了。

c fortran fft fftw dft
1个回答
1
投票

使用实数到实数变换来求解泊松方程是非常有吸引力的,因为它允许使用各种边界条件。然而,感测点并不明显对应于考虑周期性边界条件的感测点。

对于周期性边界条件,感测点位于规则网格上,例如0,1 ..,n-1。如果单位晶胞的尺寸是Lx,那么这些点之间的间距是Lx / n。故事的结局。

现在,让我们考虑边界条件,使得DST III用于正向变换,即标志RODFT01。如there所示,它在documentation of FFTW发出信号:

FFTW_RODFT01(DST-III):j = -1附近的奇数,甚至j = n-1附近。

传感点仍为0,1 ..,n-1。如果长度是Lx,则间距仍为dx = Lx /(n)。但是DST III的输入函数和基函数在j = -1附近是奇数,甚至在j = n-1附近。这解释了幅度的差异:

in_dst(i,j,k) = 27.0d0*sin(3.0d0*x(i))*sin(3.0d0*y(j))*sin(3.0d0*z(k))

实际上,这个输入在i = -1附近并不是奇数,甚至在i = n-1附近。 i = 0和i = n都是奇数。因此,以下操作可能会有所帮助:

  • 确保所考虑的正向变换是正确的。对于奇数边界条件,它可能是FFTW_RODFT00 (DST-I): odd around j=-1 and odd around j=n.
  • 在正确的感应点评估输入。对于DST-I,使用n个点,dx = Lx /(n + 1)和x_i = dx *(i + 1),对于i = 0,1,..,n-1,如果函数在0处为奇数且Lx 。
  • 计算变换空间中的频率。 the inverse transform writes帮助找到这些频率的方式。由于DST I的倒数是DST I,所以第一频率(k = 0)对应于2Lx的周期;第二个(k = 1)对应于Lx,k-st频率对应于2Lx /(k + 1)的周期。

最后,可能需要对输出进行评分,因为FFTW transforms are not normalized.对于DST-I,FFTW_RODFT00,它是N=2(n+1)。弗拉基米尔的建议无疑是一个很好的建议。实际上,虽然测试单个频率是理解和实现算法的理想选择,但最终测试必须涵盖多个频率以确保程序可靠。

© www.soinside.com 2019 - 2024. All rights reserved.