使用`streamInterleave`实现标尺函数

问题描述 投票:1回答:2

我正在做CIS 194的作业。问题是通过使用streamInterleave来实现标尺功能。代码看起来像

data Stream a = Cons a (Stream a)

streamRepeat :: a -> Stream a
streamRepeat x = Cons x (streamRepeat x)

streamMap :: (a -> b) -> Stream a -> Stream b
streamMap f (Cons x xs) = Cons (f x) (streamMap f xs)

streamInterleave :: Stream a -> Stream a -> Stream a
streamInterleave (Cons x xs) ys = Cons x (streamInterleave ys xs)

ruler :: Stream Integer
ruler = streamInterleave (streamRepeat 0) (streamMap (+1) ruler)

我真的很困惑为什么统治者可以像这样实施。这会给我[0,1,0,1....]吗?

任何帮助将不胜感激。谢谢!!

haskell stream infinite self-reference interleave
2个回答
1
投票

首先,我们将代表像这样的Stream

a1 a2 a3 a4 a5 ...

现在,我们将ruler的定义分开:

ruler :: Stream Integer
ruler = streamInterleave (streamRepeat 0) (streamMap (+1) ruler)

在哈斯克尔,重要的一点是懒惰;也就是说,在需要之前不需要对东西进行评估。这在这里很重要:它是使这个无限递归定义起作用的原因。那我们怎么理解这个呢?我们将从streamRepeat 0位开始:

0 0 0 0 0 0 0 0 0 ...

然后将其输入streamInterleave,将streamMap (+1) ruler(用xs表示)与(尚未知)流交错:

0 x 0 x 0 x 0 x 0 x 0 x ...

现在我们将开始填写那些xs。我们已经知道ruler的每一个元素都是0,所以streamMap (+1) ruler的每一个元素都必须是1

  1   x   1   x   1   x   1   x   1   x ... <--- the elements of (streamMap (+1) ruler)
0 1 0 x 0 1 0 x 0 1 0 x 0 1 0 x 0 1 0 x ... <--- the elements of ruler

现在我们知道每组四个中的每一个元素(所以数字2,6,10,14,18,...)是1,所以streamMap (+1) ruler的相应元素必须是2

  1   2   1   x   1   2   1   x   1   2 ... <--- the elements of (streamMap (+1) ruler)
0 1 0 2 0 1 0 x 0 1 0 2 0 1 0 x 0 1 0 2 ... <--- the elements of ruler

现在我们知道每组八个中的每四个元素(所以数字4,12,20,...)是2所以streamMap (+1) ruler的相应元素必须是3

  1   2   1   3   1   2   1   x   1   2 ... <--- the elements of (streamMap (+1) ruler)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 x 0 1 0 2 ... <--- the elements of ruler

我们可以通过替换每个ruler编号的n/2, 3n/2, 5n/2, ...值继续像这样无限制地建立ruler


1
投票

在Haskell表示法中,用[]代替Stream(与无限列表同构),

ruler = interleave (repeat 0) 
                   (map (+1) ruler)

[ruler !! i     | i <- [0..]]     == concat . transpose $
                                       [ repeat 0
                                       , map (+1) ruler]

ruler分成两个交替的子序列以匹配,我们得到

[ruler !! 2*i   | i <- [0..]]     == repeat 0
                                  == [0 | i <- [0..]]         -- {0} --

[ruler !! 2*i+1 | i <- [0..]]     == map (+1) ruler
                                  == map (+1) $ concat . transpose $
                                       [ [ruler !! 2*i   | i <- [0..]]
                                       , [ruler !! 2*i+1 | i <- [0..]]]
concat . transpose $              == concat . transpose $
 [[ruler !! 2*i+1 | i <- [0,2..]]      [ [1 | i <- [0..]]
 ,[ruler !! 2*i+1 | i <- [1,3..]]]     , [1 + ruler !! 2*i+1 | i <- [0..]]]

再次分裂,

  [ruler !! 4*i+1 | i <- [0..]]   == [1 | i <- [0..]]         -- {1} --

  [ruler !! 4*i+3 | i <- [0..]]   == concat . transpose $
                                       [ [1 + ruler !! 2*i+1 | i <- [0,2..]]
                                       , [1 + ruler !! 2*i+1 | i <- [1,3..]]]

然后再次,

  [ruler !! 8*i+3 | i <- [0..]]   == [2 | i <- [0..]]         -- {2} --

  [ruler !! 8*i+7 | i <- [0..]]   == ....

你应该能够从这里看到它:

      .... 16*i+7             .....   3                       -- {3} --
      .... 32*i+15            .....   4                       -- {4} --
      .... 64*i+31            .....
      ....

从而,

    ruler !! 2^(k+1)*i + 2^k - 1   ==   k    ,  k <- [0..] ,  i <- [0..]

0: i => 2i
1:      2i+1 => 4i+1
2:              4i+3 => 8i+3
3:                      8i+7 => 16i+7
4:                              16i+15 => ....
5:                                     
© www.soinside.com 2019 - 2024. All rights reserved.