并行调用元素向量和参数向量的成员函数。

问题描述 投票:1回答:1

鉴于这段代码。

struct T
{
  void f(int const);
};

void f(std::vector<T> &u, std::vector<int> const &v)
{
  for (std::size_t i = 0; i < u.size(); ++i)
    u[i].f(v[i]);
}

有没有一个标准的方法来并行处理这段代码?void f(std::vector<T> &u, std::vector<int> const &v)?

这恰好是偶然的工作(https:/godbolt.orgzgRv9Ze):

void f(std::vector<T> &u, std::vector<int> const &v)
{
  auto const indices = std::views::iota(0u, u.size()) | std::views::common;

  std::for_each(std::execution::par_unseq, std::begin(indices), std::end(indices),
                [&](std::size_t const i) { u[i].f(v[i]); });
}

但据报道,依赖这种行为是错误的(见此 错误报告而这 回答). 事实上,这并不是并行运行的(https:/godbolt.orgzMPGdHF):

void f(std::vector<T> &u, std::vector<int> const &v)
{
  std::ranges::iota_view<std::size_t, std::size_t> const indices(0u, u.size());

  std::for_each(std::execution::par_unseq, std::begin(indices), std::end(indices),
                [&](std::size_t const i) { u[i].f(v[i]); });
}

我相信应该有一个标准的方法 可以让这样的函数并行运行。我可能漏掉了一个明显的算法,但是...。std::transform 在这里似乎并不合适,其他的就更不合适了。

c++ c++17 c++20 stl-algorithm
1个回答
2
投票

保持在 std你最好的选择是 std::transform 输出迭代器,忽略给它的内容。

struct unit_iterator {
    using difference_type = std::ptrdiff_t;
    using value_type = std::tuple<>;
    using pointer = std::tuple<> *;
    using const_pointer = const std::tuple<> *;
    using reference = std::tuple<> &;
    using const reference = const std::tuple<> &;
    using iterator_category = std::random_access_iterator_tag;

    reference operator*() { return value; }
    const_reference operator*() const { return value; }
    reference operator[](difference_type) { return value; }
    const_reference operator[](difference_type) const { return value; }
    pointer operator->() { return &value; }
    const_pointer operator->() const { return &value; }

    unit_iterator& operator++() { return *this; }
    unit_iterator operator++(int) { return *this; }
    unit_iterator& operator+=(difference_type) { return *this; }
    unit_iterator operator+(difference_type) const { return *this; }

    unit_iterator& operator--() { return *this; }
    unit_iterator operator--(int) { return *this; }
    unit_iterator& operator-=(difference_type) { return *this; }
    unit_iterator operator-(difference_type) const { return *this; }

    difference_type operator-(unit_iterator) const { return 0; }

    bool operator==(unit_iterator) const { return true; }
    bool operator!=(unit_iterator) const { return false; }
    bool operator<(unit_iterator) const { return false; }
    bool operator<=(unit_iterator) const { return true; }
    bool operator>(unit_iterator) const { return false; }
    bool operator>=(unit_iterator) const { return true; }
private:
    static value_type value;
};


void f(std::vector<T> &u, std::vector<int> const &v)
{
  std::transform(std::execution::par_unseq, begin(u), end(u), begin(v), unit_iterator{},
                 [](T & u, int v) { u.f(v); return std::tuple<>{}; });
}
© www.soinside.com 2019 - 2024. All rights reserved.