计算 BigInteger 的平方

问题描述 投票:0回答:5

我正在使用 .NET 4 的 System.Numerics.BigInteger 结构

我需要计算非常大的数字的平方 (x2) - 数百万十进制数字

如果

x
是一个
BigInteger
,那么时间复杂度是多少:

x*x;

BigInteger.Pow(x,2);

如何使用 .NET 4 BigInteger 以最快的方式乘以如此大的数字? Schönhage–Strassen 算法有实现吗?

c# math .net-4.0 complexity-theory biginteger
5个回答
7
投票

这取决于你的人数有多少。正如维基百科页面告诉您的那样:

在实践中,对于超过 2215 到 2217(10,000 到 40,000 个十进制数字)的数字,Schönhage–Strassen 算法开始优于旧方法,例如 Karatsuba 和 Toom–Cook 乘法。

System.Numerics.BigInteger
使用 Karatsuba 算法 或标准教科书乘法,具体取决于数字的大小。 Karasuba 的时间复杂度为 O(n log2 3)。但如果您的数字小于上面引用的数字,那么您可能不会看到实施 Schönhage–Strassen 带来的加速。

至于

Pow()
,它本身在计算过程中至少对数字进行一次平方(并且通过简单地执行
num * num
来实现这一点——所以我认为这也不会更有效。



2
投票

一种非常简单的实现方法是基于FFT。由于将两个数字相乘相当于执行其系数的卷积,然后通过一次消除进位,因此您应该能够通过 FFT 方法以 O(n log n) 运算进行卷积(n = 位数)。

数值食谱有一章介绍这一点。对于如此大的数字,这绝对比分而治之的方法更快。


2
投票
  • 首先,

    System.Numerics.BigInteger
    不使用[Karatsuba 算法] 具有 O(n 0.5 ),它使用标准教科书乘法 O(n 2 )。

  • 通过此代码,您可以在短短 1.4 毫秒内乘以两个 30,000 位(大约 9000 个十进制数字)。

         public  void benchMark()
         {
             Xint U, V,Temp;
             int n = 30000;
             while (n > 29000)
             {
                 U = RND(n << 1);
                 //_______________________
                 sw.Restart();
                 Temp = U * U;
                 sw.Stop();
                 label7.Text = Convert.ToString("Micro " + sw.Elapsed.TotalMilliseconds + " ms");
                 //_______________________
    
             }
          n>>=1;
         }
    
         public static Xint MTP(Xint U, Xint V)
         {
             return MTP(U, V, Xint.Max(U.Sign * U, V.Sign * V).ToByteArray().Length << 3);
         }
         public static Xint MTP(Xint U, Xint V, int n)
         {
             if (n <= 3000) return U * V;
             if (n <= 6000) return TC2(U, V, n);
             if (n <= 10000) return TC3(U, V, n);
             if (n <= 40000) return TC4(U, V, n);
             return TC2P(U, V, n);
         }
         private static Xint MTPr(Xint U, Xint V, int n)
         {
             if (n <= 3000) return U * V;
             if (n <= 6000) return TC2(U, V, n);
             if (n <= 10000) return TC3(U, V, n);
             return TC4(U, V, n);
         }
         private static Xint TC2(Xint U1, Xint V1, int n)
         {
             n >>= 1;
             Xint Mask = (Xint.One << n) - 1;
             Xint U0 = U1 & Mask; U1 >>= n;
             Xint V0 = V1 & Mask; V1 >>= n;
             Xint P0 = MTPr(U0, V0, n);
             Xint P2 = MTPr(U1, V1, n);
             return ((P2 << n) + (MTPr(U0 + U1, V0 + V1, n) - (P0 + P2)) << n) + P0;
         }
         private static Xint TC3(Xint U2, Xint V2, int n)
         {
             n = (int)((long)(n) * 0x55555556 >> 32); // n /= 3;
             Xint Mask = (Xint.One << n) - 1;
             Xint U0 = U2 & Mask; U2 >>= n;
             Xint U1 = U2 & Mask; U2 >>= n;
             Xint V0 = V2 & Mask; V2 >>= n;
             Xint V1 = V2 & Mask; V2 >>= n;
             Xint W0 = MTPr(U0, V0, n);
             Xint W4 = MTPr(U2, V2, n);
             Xint P3 = MTPr((((U2 << 1) + U1) << 1) + U0, (((V2 << 1) + V1 << 1)) + V0, n);
             U2 += U0;
             V2 += V0;
             Xint P2 = MTPr(U2 - U1, V2 - V1, n);
             Xint P1 = MTPr(U2 + U1, V2 + V1, n);
             Xint W2 = (P1 + P2 >> 1) - (W0 + W4);
             Xint W3 = W0 - P1;
             W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1);
             Xint W1 = P1 - (W4 + W3 + W2 + W0);
             return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
         }
         private static Xint TC4(Xint U3, Xint V3, int n)
         {
             n >>= 2;
             Xint Mask = (Xint.One << n) - 1;
             Xint U0 = U3 & Mask; U3 >>= n;
             Xint U1 = U3 & Mask; U3 >>= n;
             Xint U2 = U3 & Mask; U3 >>= n;
             Xint V0 = V3 & Mask; V3 >>= n;
             Xint V1 = V3 & Mask; V3 >>= n;
             Xint V2 = V3 & Mask; V3 >>= n;
    
             Xint W0 = MTPr(U0, V0, n);                               //  0
             U0 += U2; U1 += U3;
             V0 += V2; V1 += V3;
             Xint P1 = MTPr(U0 + U1, V0 + V1, n);                     //  1
             Xint P2 = MTPr(U0 - U1, V0 - V1, n);                     // -1
             U0 += 3 * U2; U1 += 3 * U3;
             V0 += 3 * V2; V1 += 3 * V3;
             Xint P3 = MTPr(U0 + (U1 << 1), V0 + (V1 << 1), n);       //  2
             Xint P4 = MTPr(U0 - (U1 << 1), V0 - (V1 << 1), n);       // -2
             Xint P5 = MTPr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2),
                            V0 + 12 * V2 + ((V1 + 12 * V3) << 2), n); //  4
             Xint W6 = MTPr(U3, V3, n);                               //  inf
    
             Xint W1 = P1 + P2;
             Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6;
             Xint W2 = (W1 >> 1) - (W6 + W4 + W0);
             P1 = P1 - P2;
             P4 = P4 - P3;
             Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45;
             W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2);
             Xint W3 = (P1 >> 1) - (W1 + W5);
             return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
         }
         private static Xint TC2P(Xint A, Xint B, int n)
         {
             n >>= 1;
             Xint Mask = (Xint.One << n) - 1;
             Xint[] U = new Xint[3];
             U[0] = A & Mask; A >>= n; U[2] = A; U[1] = U[0] + A;
             Xint[] V = new Xint[3];
             V[0] = B & Mask; B >>= n; V[2] = B; V[1] = V[0] + B;
             Xint[] P = new Xint[3];
             Parallel.For(0, 3, (int i) => P[i] = MTPr(U[i], V[i], n));
             return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0];
         }
    
         private static long current_n;
        private static Xint Product(int n)
         {
             if (n > 2) return MTP(Product(n - (n >>= 1)), Product(n));
             if (n > 1) return (current_n += 2) * (current_n += 2);
             return current_n += 2;
         }
    
         public static Xint[] DQR(Xint A, Xint B)
         {
             int n = bL(B);
             int m = bL(A) - n;
             if (m <= 6000) return SmallDivRem(A, B);
             int signA = A.Sign; A *= signA;
             int signB = B.Sign; B *= signB;
             Xint[] QR = new Xint[2];
             if (m <= n) QR = D21(A, B, n);
             else
             {
                 Xint Mask = (Xint.One << n) - 1;
                 m /= n;
                 Xint[] U = new Xint[m];
                 int i = 0;
                 for (; i < m; i++)
                 {
                     U[i] = A & Mask;
                     A >>= n;
                 }
                 QR = D21(A, B, n);
                 A = QR[0];
                 for (i--; i >= 0; i--)
                 {
                     QR = D21(QR[1] << n | U[i], B, n);
                     A = A << n | QR[0];
                 }
                 QR[0] = A;
             }
             QR[0] *= signA * signB;
             QR[1] *= signA;
             return QR;
         }
         private static Xint[] SmallDivRem(Xint A, Xint B)
         {
             Xint[] QR = new Xint[2];
             QR[0] = Xint.DivRem(A, B, out QR[1]);
             return QR;
         }
         private static Xint[] D21(Xint A, Xint B, int n)
         {
             if (n <= 6000) return SmallDivRem(A, B);
             int s = n & 1;
             A <<= s;
             B <<= s;
             n++;
             n >>= 1;
             Xint Mask = (Xint.One << n) - 1;
             Xint B1 = B >> n;
             Xint B2 = B & Mask;
             Xint[] QR1 = D32(A >> (n << 1), A >> n & Mask, B, B1, B2, n);
             Xint[] QR2 = D32(QR1[1], A & Mask, B, B1, B2, n);
             QR2[0] |= QR1[0] << n;
             QR2[1] >>= s;
             return QR2;
         }
         private static Xint[] D32(Xint A12, Xint A3, Xint B, Xint B1, Xint B2, int n)
         {
             Xint[] QR = new Xint[2];
             if ((A12 >> n) != B1) QR = D21(A12, B1, n);
             else
             {
                 QR[0] = (Xint.One << n) - 1;
                 QR[1] = A12 + B1 - (B1 << n);
             }
             QR[1] = (QR[1] << n | A3) - MTP(QR[0], B2, n);
             while (QR[1] < 0)
             {
                 QR[0] -= 1;
                 QR[1] += B;
             }
             return QR;
         }
    
         public static Xint SQ(Xint U)
         {
             return SQ(U, U.Sign * U.ToByteArray().Length << 3);
         }
         public static Xint SQ(Xint U, int n)
         {
             if (n <= 700) return U * U;
             if (n <= 3000) return Xint.Pow(U, 2);
             if (n <= 6000) return SQ2(U, n);
             if (n <= 10000) return SQ3(U, n);
             if (n <= 40000) return SQ4(U, n);
             return SQ2P(U, n);
         }
         private static Xint SQr(Xint U, int n)
         {
             if (n <= 3000) return Xint.Pow(U, 2);
             if (n <= 6000) return SQ2(U, n);
             if (n <= 10000) return SQ3(U, n);
             return SQ4(U, n);
         }
         private static Xint SQ2(Xint U1, int n)
         {
             n >>= 1;
             Xint U0 = U1 & ((Xint.One << n) - 1); U1 >>= n;
             Xint P0 = SQr(U0, n);
             Xint P2 = SQr(U1, n);
             return ((P2 << n) + (SQr(U0 + U1, n) - (P0 + P2)) << n) + P0;
         }
         private static Xint SQ3(Xint U2, int n)
         {
             n = (int)((long)(n) * 0x55555556 >> 32);
             Xint Mask = (Xint.One << n) - 1;
             Xint U0 = U2 & Mask; U2 >>= n;
             Xint U1 = U2 & Mask; U2 >>= n;
             Xint W0 = SQr(U0, n);
             Xint W4 = SQr(U2, n);
             Xint P3 = SQr((((U2 << 1) + U1) << 1) + U0, n);
             U2 += U0;
             Xint P2 = SQr(U2 - U1, n);
             Xint P1 = SQr(U2 + U1, n);
             Xint W2 = (P1 + P2 >> 1) - (W0 + W4);
             Xint W3 = W0 - P1;
             W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1);
             Xint W1 = P1 - (W4 + W3 + W2 + W0);
             return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
         }
         private static Xint SQ4(Xint U3, int n)
         {
             n >>= 2;
             Xint Mask = (Xint.One << n) - 1;
             Xint U0 = U3 & Mask; U3 >>= n;
             Xint U1 = U3 & Mask; U3 >>= n;
             Xint U2 = U3 & Mask; U3 >>= n;
             Xint W0 = SQr(U0, n);                                   //  0
             U0 += U2;
             U1 += U3;
             Xint P1 = SQr(U0 + U1, n);                              //  1
             Xint P2 = SQr(U0 - U1, n);                              // -1
             U0 += 3 * U2;
             U1 += 3 * U3;
             Xint P3 = SQr(U0 + (U1 << 1), n);                       //  2
             Xint P4 = SQr(U0 - (U1 << 1), n);                       // -2
             Xint P5 = SQr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2), n); //  4
             Xint W6 = SQr(U3, n);                                   //  inf
             Xint W1 = P1 + P2;
             Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6;
             Xint W2 = (W1 >> 1) - (W6 + W4 + W0);
             P1 = P1 - P2;
             P4 = P4 - P3;
             Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45;
             W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2);
             Xint W3 = (P1 >> 1) - (W1 + W5);
             return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
         }
         private static Xint SQ2P(Xint A, int n)
         {
             n >>= 1;
             Xint[] U = new Xint[3];
             U[0] = A & ((Xint.One << n) - 1); A >>= n; U[2] = A; U[1] = U[0] + A;
             Xint[] P = new Xint[3];
             Parallel.For(0, 3, (int i) => P[i] = SQr(U[i], n));
             return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0];
         }
    
         public static Xint POW(Xint X, int y)
         {
             if (y > 1) return ((y & 1) == 1) ? SQ(POW(X, y >> 1)) * X : SQ(POW(X, y >> 1));
             if (y == 1) return X;
             return 1;
         }
    
         public static Xint[] SR(Xint A)
         {
             return SR(A, bL(A));
         }
         public static Xint[] SR(Xint A, int n)
         {
             if (n < 53) return SR52(A);
             int m = n >> 2;
             Xint Mask = (Xint.One << m) - 1;
             Xint A0 = A & Mask; A >>= m;
             Xint A1 = A & Mask; A >>= m;
             Xint[] R = SR(A, n - (m << 1));
             Xint[] D = DQR(R[1] << m | A1, R[0] << 1);
             R[0] = (R[0] << m) + D[0];
             R[1] = (D[1] << m | A0) - SQ(D[0], m);
             if (R[1] < 0)
             {
                 R[0] -= 1;
                 R[1] += (R[0] << 1) | 1;
             }
             return R;
         }
         private static Xint[] SR52(Xint A)
         {
             double a = (double)A;
             long q = (long)Math.Sqrt(a);
             long r = (long)(a) - q * q;
             Xint[] QR = { q, r };
             return QR;
         }
    
         public static Xint SRO(Xint A)
         {
             return SRO(A, bL(A));
         }
         public static Xint SRO(Xint A, int n)
         {
             if (n < 53) return (int)Math.Sqrt((double)A);
             Xint[] R = SROr(A, n, 1);
             return R[0];
         }
         private static Xint[] SROr(Xint A, int n, int rc) // rc=recursion counter
         {
             if (n < 53) return SR52(A);
             int m = n >> 2;
             Xint Mask = (Xint.One << m) - 1;
             Xint A0 = A & Mask; A >>= m;
             Xint A1 = A & Mask; A >>= m;
             Xint[] R = SROr(A, n - (m << 1), rc + 1);
             Xint[] D = DQR((R[1] << m) | A1, R[0] << 1);
             R[0] = (R[0] << m) + D[0];
             rc--;
             if (rc != 0)
             {
                 R[1] = (D[1] << m | A0) - SQ(D[0], m);
                 if (R[1] < 0)
                 {
                     R[0] -= 1;
                     R[1] += (R[0] << 1) | 1;
                 }
                 return R;
             }
             n = (bL(D[0]) << 1) - bL(D[1] << m | A0);
             if (n < 0) return R;
             if (n > 1)
             {
                 R[0] -= 1;
                 return R;
             }
             int shift = (bL(D[0]) - 31) << 1;
             long d0 = (int)(D[0] >> (shift >> 1));
             long d = (long)((D[1] >> (shift - m)) | (A0 >> shift)) - d0 * d0;
             if (d < 0)
             {
                 R[0] -= 1;
                 return R;
             }
             if (d > d0 << 1) return R;
             R[0] -= (1 - (((D[1] << m) | A0) - SQ(D[0], m)).Sign) >> 1;
             return R;
         }
    
         public static int bL(Xint U)
         {
             byte[] bytes = (U.Sign * U).ToByteArray();
             int i = bytes.Length - 1;
             return (i << 3) + bitLengthMostSignificantByte(bytes[i]);
         }
         private static int bitLengthMostSignificantByte(byte b)
         {
             return b < 08 ? b < 02 ? b < 01 ? 0 : 1 :
                                      b < 04 ? 2 : 3 :
                             b < 32 ? b < 16 ? 4 : 5 :
                                      b < 64 ? 6 : 7;
         }
    
         public static int fL2(int i)
         {
             return
             i < 1 << 15 ? i < 1 << 07 ? i < 1 << 03 ? i < 1 << 01 ? i < 1 << 00 ? -1 : 00 :
                                                                     i < 1 << 02 ? 01 : 02 :
                                                       i < 1 << 05 ? i < 1 << 04 ? 03 : 04 :
                                                                     i < 1 << 06 ? 05 : 06 :
                                         i < 1 << 11 ? i < 1 << 09 ? i < 1 << 08 ? 07 : 08 :
                                                                     i < 1 << 10 ? 09 : 10 :
                                                       i < 1 << 13 ? i < 1 << 12 ? 11 : 12 :
                                                                     i < 1 << 14 ? 13 : 14 :
                           i < 1 << 23 ? i < 1 << 19 ? i < 1 << 17 ? i < 1 << 16 ? 15 : 16 :
                                                                     i < 1 << 18 ? 17 : 18 :
                                                       i < 1 << 21 ? i < 1 << 20 ? 19 : 20 :
                                                                     i < 1 << 22 ? 21 : 22 :
                                         i < 1 << 27 ? i < 1 << 25 ? i < 1 << 24 ? 23 : 24 :
                                                                     i < 1 << 26 ? 25 : 26 :
                                                       i < 1 << 29 ? i < 1 << 28 ? 27 : 28 :
                                                                     i < 1 << 30 ? 29 : 30;
         }
    
         private static int seed;
         public static Xint RND(int n)
         {
             if (n < 2) return n;
             if (seed == int.MaxValue) seed = 0; else seed++;
             Random rand = new Random(seed);
             byte[] bytes = new byte[(n + 15) >> 3];
             rand.NextBytes(bytes);
             int i = bytes.Length - 1;
             bytes[i] = 0;
             n = (i << 3) - n;
             i--;
             bytes[i] >>= n;
             bytes[i] |= (byte)(128 >> n);
             return new Xint(bytes);
         }
     //++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    
      }
    }
    

1
投票

您可以使用 GNU MP Bignum 库的 C# 包装器,这可能是您能达到的最快速度。对于纯 C# 实现,您可以尝试 IntX

最快的乘法算法实际上是Fürer算法,但我还没有找到它的任何实现。

© www.soinside.com 2019 - 2024. All rights reserved.