我已经使用c ++(opencv版本2.4)实现了错误级别分析算法,我想使用cython为它构建一个python包装器。我已经阅读了cthon的cython文档的一些部分,但它没有帮助我,而且我没有找到任何有关在线实现包装器的额外信息。如果有人可以指导我并帮助我解决这个问题,那真的很棒。
这是我想要构建python包装器的代码:
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <vector>
// Control
int scale = 15,
quality = 75;
// Image containers
cv::Mat input_image,
compressed_image;
void processImage(int, void*)
{
// Setting up parameters and JPEG compression
std::vector<int> parameters;
parameters.push_back(CV_IMWRITE_JPEG_QUALITY);
parameters.push_back(quality);
cv::imwrite("lena.jpeg", input_image, parameters);
// Reading temp image from the disk
compressed_image = cv::imread("lena.jpeg");
if (compressed_image.empty())
{
std::cout << "> Error loading temp image" << std::endl;
exit(EXIT_FAILURE);
}
cv::Mat output_image = cv::Mat::zeros(input_image.size(), CV_8UC3);
// Compare values through matrices
for (int row = 0; row < input_image.rows; ++row)
{
const uchar* ptr_input = input_image.ptr<uchar>(row);
const uchar* ptr_compressed = compressed_image.ptr<uchar>(row);
uchar* ptr_out = output_image.ptr<uchar>(row);
for (int column = 0; column < input_image.cols; column++)
{
// Calc abs diff for each color channel multiplying by a scale factor
ptr_out[0] = abs(ptr_input[0] - ptr_compressed[0]) * scale;
ptr_out[1] = abs(ptr_input[1] - ptr_compressed[1]) * scale;
ptr_out[2] = abs(ptr_input[2] - ptr_compressed[2]) * scale;
ptr_input += 3;
ptr_compressed += 3;
ptr_out += 3;
}
}
// Shows processed image
cv::imshow("Error Level Analysis", output_image);
}
int main (int argc, char* argv[])
{
// Verifica se o número de parâmetros necessário foi informado
if (argc < 2)
{
std::cout << "> You need to provide an image as parameter" << std::endl;
return EXIT_FAILURE;
}
// Read the image
input_image = cv::imread(argv[1]);
// Check image load
if (input_image.empty())
{
std::cout << "> Error loading input image" << std::endl;
return EXIT_FAILURE;
}
// Set up window and trackbar
cv::namedWindow("Error Level Analysis", CV_WINDOW_AUTOSIZE);
cv::imshow("Error Level Analysis", input_image);
cv::createTrackbar("Scale", "Error Level Analysis", &scale, 100, processImage);
cv::createTrackbar("Quality", "Error Level Analysis", &quality, 100, processImage);
// Press 'q' to quit
while (char(cv::waitKey(0)) != 'q') {};
return EXIT_SUCCESS;
}
https://github.com/shreyneil/image_test/blob/master/ela.cpp
欢迎捐款。谢谢。
你希望通过这个实现目标并不是很清楚,但是从Cython中调用这些函数非常容易。首先对main
进行一些小的更改 - 它将需要重命名,以便它不再作为程序的主函数,并且由于您只使用第二个命令行参数作为文件名,您应该将其更改为:
void some_function(char* filename) {
// Read the image
input_image = cv::imread(filename);
// everything else the same
}
然后创建你的Cython包装器cy_wrap.pyx
。这有两个部分。首先,您需要告诉Cython您的两个C ++函数(cdef extern from
)。其次,您需要编写一个可以从Python调用这些函数的小包装器函数:
cdef extern from "ela.hpp":
# you'll need to create ela.hpp with declarations for your two functions
void processImage(int, void*)
void some_function(char* filename)
# and Python wrappers
def processImagePy():
# since the parameters are ignored in C++ we can pass anything
processImage(0,NULL)
def some_functionPy(filename):
# automatic conversion from string to char*
some_function(filename)
使用此模块,您将能够调用processImagePy
和some_functionPy
。
要将其编译为Python模块,您需要编写setup.py文件。我建议你关注the template given in the Cython documentation(你读过,对吗?)。您的源文件将是cy_wrap.pyx
和ela.cpp
。您可能想要链接到OpenCV库。你需要specify language="c++"