拼图:找到最大的矩形(最大矩形问题)

问题描述 投票:36回答:7

什么是最有效的算法找到适合空白区域的最大面积的矩形?

假设屏幕看起来像这样('#'代表填充区域):

....................
..............######
##..................
.................###
.................###
#####...............
#####...............
#####...............

一个可能的解决方案是:

....................
..............######
##...++++++++++++...
.....++++++++++++###
.....++++++++++++###
#####++++++++++++...
#####++++++++++++...
#####++++++++++++...

通常我会喜欢找出解决方案。虽然这次我想避免浪费时间自己摸索,因为这对我正在研究的项目有实际用途。有一个众所周知的解决方案吗?

Shog9写道:

您的输入是一个数组(如其他响应所暗示的那样),还是一个以任意大小的定位矩形形式的遮挡列表(在处理窗口位置时窗口系统中可能就是这种情况)?

是的,我有一个跟踪屏幕上放置的一组窗口的结构。我还有一个网格,可以跟踪每个边缘之间的所有区域,无论它们是空的还是填充的,以及它们左边或顶边的像素位置。我认为有一些修改后的形式可以利用这个属性。你知道吗?

algorithm language-agnostic math geometry
7个回答
22
投票

我是Dobb博士的文章的作者,并偶尔被问及实施。这是C中的一个简单的:

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct {
  int one;
  int two;
} Pair;

Pair best_ll = { 0, 0 };
Pair best_ur = { -1, -1 };
int best_area = 0;

int *c; /* Cache */
Pair *s; /* Stack */
int top = 0; /* Top of stack */

void push(int a, int b) {
  s[top].one = a;
  s[top].two = b;
  ++top;
}

void pop(int *a, int *b) {
  --top;
  *a = s[top].one;
  *b = s[top].two;
}


int M, N; /* Dimension of input; M is length of a row. */

void update_cache() {
  int m;
  char b;
  for (m = 0; m!=M; ++m) {
    scanf(" %c", &b);
    fprintf(stderr, " %c", b);
    if (b=='0') {
      c[m] = 0;
    } else { ++c[m]; }
  }
  fprintf(stderr, "\n");
}


int main() {
  int m, n;
  scanf("%d %d", &M, &N);
  fprintf(stderr, "Reading %dx%d array (1 row == %d elements)\n", M, N, M);
  c = (int*)malloc((M+1)*sizeof(int));
  s = (Pair*)malloc((M+1)*sizeof(Pair));
  for (m = 0; m!=M+1; ++m) { c[m] = s[m].one = s[m].two = 0; }
  /* Main algorithm: */
  for (n = 0; n!=N; ++n) {
    int open_width = 0;
    update_cache();
    for (m = 0; m!=M+1; ++m) {
      if (c[m]>open_width) { /* Open new rectangle? */
        push(m, open_width);
        open_width = c[m];
      } else /* "else" optional here */
      if (c[m]<open_width) { /* Close rectangle(s)? */
        int m0, w0, area;
        do {
          pop(&m0, &w0);
          area = open_width*(m-m0);
          if (area>best_area) {
            best_area = area;
            best_ll.one = m0; best_ll.two = n;
            best_ur.one = m-1; best_ur.two = n-open_width+1;
          }
          open_width = w0;
        } while (c[m]<open_width);
        open_width = c[m];
        if (open_width!=0) {
          push(m0, w0);
        }
      }
    }
  }
  fprintf(stderr, "The maximal rectangle has area %d.\n", best_area);
  fprintf(stderr, "Location: [col=%d, row=%d] to [col=%d, row=%d]\n",
                  best_ll.one+1, best_ll.two+1, best_ur.one+1, best_ur.two+1);
  return 0;
}

它从控制台获取输入。你可以,例如将此文件传递给它:

16 12
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 0 1 1 * * * * * * 0 0 1 0
0 0 0 0 0 0 * * * * * * 0 0 1 0
0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0
0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

打印输入后,输出:

The maximal rectangle has area 12.
Location: [col=7, row=6] to [col=12, row=5]

上面的实现当然没什么特别的,但是它与Dobb博士的文章中的解释非常接近,应该很容易转化为所需要的东西。


20
投票

@lassevk

我从DDJ找到了引用的文章:The Maximal Rectangle Problem


4
投票

这是一个包含一些代码和一些分析的页面。

您的特定问题在页面上稍微开始,在页面中搜索文本最大矩形问题。

http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module6/module6.html


2
投票

@lassevk

    // 4. Outer double-for-loop to consider all possible positions 
    //    for topleft corner. 
    for (int i=0; i < M; i++) {
      for (int j=0; j < N; j++) {

        // 2.1 With (i,j) as topleft, consider all possible bottom-right corners. 

        for (int a=i; a < M; a++) {
          for (int b=j; b < N; b++) {

哈哈... O(m2 n2)..这可能是我想出的。

我看到他们继续开发优化......看起来不错,我会读一读。


2
投票

我在Java中实现了Dobbs的解决方案。

什么都不保证。

package com.test;

import java.util.Stack;

public class Test {

    public static void main(String[] args) {
        boolean[][] test2 = new boolean[][] { new boolean[] { false, true, true, false },
                new boolean[] { false, true, true, false }, new boolean[] { false, true, true, false },
                new boolean[] { false, true, false, false } };
        solution(test2);
    }

    private static class Point {
        public Point(int x, int y) {
            this.x = x;
            this.y = y;
        }

        public int x;
        public int y;
    }

    public static int[] updateCache(int[] cache, boolean[] matrixRow, int MaxX) {
        for (int m = 0; m < MaxX; m++) {
            if (!matrixRow[m]) {
                cache[m] = 0;
            } else {
                cache[m]++;
            }
        }
        return cache;
    }

    public static void solution(boolean[][] matrix) {
        Point best_ll = new Point(0, 0);
        Point best_ur = new Point(-1, -1);
        int best_area = 0;

        final int MaxX = matrix[0].length;
        final int MaxY = matrix.length;

        Stack<Point> stack = new Stack<Point>();
        int[] cache = new int[MaxX + 1];

        for (int m = 0; m != MaxX + 1; m++) {
            cache[m] = 0;
        }

        for (int n = 0; n != MaxY; n++) {
            int openWidth = 0;
            cache = updateCache(cache, matrix[n], MaxX);
            for (int m = 0; m != MaxX + 1; m++) {
                if (cache[m] > openWidth) {
                    stack.push(new Point(m, openWidth));
                    openWidth = cache[m];
                } else if (cache[m] < openWidth) {
                    int area;
                    Point p;
                    do {
                        p = stack.pop();
                        area = openWidth * (m - p.x);
                        if (area > best_area) {
                            best_area = area;
                            best_ll.x = p.x;
                            best_ll.y = n;
                            best_ur.x = m - 1;
                            best_ur.y = n - openWidth + 1;
                        }
                        openWidth = p.y;
                    } while (cache[m] < openWidth);
                    openWidth = cache[m];
                    if (openWidth != 0) {
                        stack.push(p);
                    }
                }
            }
        }

        System.out.printf("The maximal rectangle has area %d.\n", best_area);
        System.out.printf("Location: [col=%d, row=%d] to [col=%d, row=%d]\n", best_ll.x + 1, best_ll.y + 1,
                best_ur.x + 1, best_ur.y + 1);
    }

}

2
投票

经过这么多努力我写了这个算法......只看代码......

你了解这一点。这段代码说话!!

import java.util.Scanner;
import java.util.Stack;

/**
 * Created by BK on 05-08-2017.
 */
public class LargestRectangleUnderHistogram {
    public static void main(String... args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int[] input = new int[n];
        for (int j = 0; j < n; j++) {
            input[j] = scanner.nextInt();
        }



        /*
        *   This is the procedure used for solving :
        *
        *   Travel from first element to last element of the array
        *
        *   If stack is empty add current element to stack
        *
        *   If stack is not empty check for the top element of stack if
        *   it is smaller than the current element push into stack
        *
        *   If it is larger than the current element pop the stack until we get an
        *   element smaller than the current element or until stack becomes empty
        *
        *   After popping each element check if the stack is empty or not..
        *
        *   If stack is empty it means that this is the smallest element encountered till now
        *
        *   So we can multiply i with this element to get a big rectangle which is contributed by
        *
        *   this
        *
        *   If stack is not empty then check for individual areas(Not just one bar individual area means largest rectangle by this) (i-top)*input[top]
        *
        *
        * */

        /*
        * Initializing the maxarea as we check each area with maxarea
        */

        int maxarea = -1;
        int i = 0;
        Stack<Integer> stack = new Stack<>();
        for (i = 0; i < input.length; i++) {

            /*
            *   Pushing the element if stack is empty
            * */


            if (stack.isEmpty()) {
                stack.push(i);
            } else {

                /*
                *   If stack top element is less than current element push
                * */

                if (input[stack.peek()] < input[i]) {
                    stack.push(i);
                } else {

                    /*
                    *   Else pop until we encounter an element smaller than this in stack or stack becomes empty
                    *   
                    * */


                    while (!stack.isEmpty() && input[stack.peek()] > input[i]) {

                        int top = stack.pop();

                        /*
                        *   If stack is empty means this is the smallest element encountered so far
                        *   
                        *   So we can multiply this with i
                        * */

                        if (stack.isEmpty()) {
                            maxarea = maxarea < (input[top] * i) ? (input[top] * i) : maxarea;
                        }

                        /*
                         *  If stack is not empty we find areas of each individual rectangle
                         *  Remember we are in while loop
                         */

                        else {
                            maxarea = maxarea < (input[top] * (i - top)) ? (input[top] * (i - top)) : maxarea;
                        }
                    }
                    /*
                    *   Finally pushing the current element to stack
                    * */

                    stack.push(i);
                }
            }
        }

        /*
        *  This is for checking if stack is not empty after looping the last element of input
        *  
        *  This happens if input is like this 4 5 6 1 2 3 4 5
        *  
        *  Here 2 3 4 5 remains in stack as they are always increasing and we never got 
        *  
        *  a chance to pop them from stack by above process
        *  
        * */


        while (!stack.isEmpty()) {

            int top = stack.pop();

            maxarea = maxarea < (i - top) * input[top] ? (i - top) * input[top] : maxarea;
        }

        System.out.println(maxarea);
    }
}

2
投票

我是关于LeetCode的Maximal Rectangle Solution的作者,这是这个答案的基础。

由于基于堆栈的解决方案已经在其他答案中讨论过,我想提出一个源自用户O(NM)的最佳morrischen2008动态编程解决方案。

直觉

想象一个算法,对于每个点,我们通过执行以下操作来计算矩形:

  • 通过向上迭代找到矩形的最大高度,直到达到填充区域
  • 通过向左和向右迭代直到找不到矩形最大高度的高度来查找矩形的最大宽度

例如,找到由黄点定义的矩形:enter image description here

我们知道最大矩形必须是以这种方式构造的矩形之一(最大矩形必须在其底部有一个点,下一个填充的正方形高于该点的高度)。

对于每个点,我们定义一些变量:

h - 由该点定义的矩形的高度

l - 由该点定义的矩形的左边界

r - 由该点定义的矩形的右边界

这三个变量唯一地定义了该点的矩形。我们可以用h * (r - l)计算这个矩形的面积。所有这些领域的全球最大值是我们的结果。

使用动态编程,我们可以使用前一行中每个点的hlr来计算线性时间中下一行中每个点的hlr

算法

给定行matrix[i],我们通过定义三个数组 - hlr来跟踪行中每个点的heightleftright

height[j]将对应于matrix[i][j]的高度,依此类推,与其他阵列相对应。

现在的问题是如何更新每个阵列。

height

h定义为从我们的点开始的一行中连续未填充空格的数量。如果有一个新空间,我们递增,如果空间被填充则设置为零(我们使用'1'表示空白,'0'表示填充空格)。

new_height[j] = old_height[j] + 1 if row[j] == '1' else 0

left

考虑导致矩形左边界变化的原因。由于在当前版本的left中已经考虑了当前版本的left中所有填充空格的所有实例,因此我们当前行中遇到填充空间的唯一因素是影响我们的new_left[j] = max(old_left[j], cur_left)

结果我们可以定义:

cur_left

right比我们遇到的最右边的空间更大。当我们将矩形“展开”到左侧时,我们知道它不能扩展到该点之外,否则它将进入填充空间。

left

在这里,我们可以在new_right[j] = min(old_right[j], cur_right) 中重用我们的推理并定义:

cur_right

def maximalRectangle(matrix): if not matrix: return 0 m = len(matrix) n = len(matrix[0]) left = [0] * n # initialize left as the leftmost boundary possible right = [n] * n # initialize right as the rightmost boundary possible height = [0] * n maxarea = 0 for i in range(m): cur_left, cur_right = 0, n # update height for j in range(n): if matrix[i][j] == '1': height[j] += 1 else: height[j] = 0 # update left for j in range(n): if matrix[i][j] == '1': left[j] = max(left[j], cur_left) else: left[j] = 0 cur_left = j + 1 # update right for j in range(n-1, -1, -1): if matrix[i][j] == '1': right[j] = min(right[j], cur_right) else: right[j] = n cur_right = j # update the area for j in range(n): maxarea = max(maxarea, height[j] * (right[j] - left[j])) return maxarea 是我们遇到的最充满空间的最左边的事件。

履行

qazxswpoi
© www.soinside.com 2019 - 2024. All rights reserved.