我希望能够面对一个R
plotly
heatmap
。
这就是我的意思:我有一个分层聚类的基因表达数据集:
require(permute)
set.seed(1)
mat <- rbind(cbind(matrix(rnorm(2500,2,1),nrow=25,ncol=500),matrix(rnorm(2500,-2,1),nrow=25,ncol=500)),
cbind(matrix(rnorm(2500,-2,1),nrow=25,ncol=500),matrix(rnorm(2500,2,1),nrow=25,ncol=500)))
rownames(mat) <- paste("g",1:50,sep=".")
colnames(mat) <- paste("s",1:1000,sep=".")
hc.col <- hclust(dist(t(mat)))
dd.col <- as.dendrogram(hc.col)
col.order <- order.dendrogram(dd.col)
hc.row <- hclust(dist(mat))
dd.row <- as.dendrogram(hc.row)
row.order <- order.dendrogram(dd.row)
mat <- mat[row.order,col.order]
然后我将它离散化为特定的表达范围,因为这有助于我案例的颜色分辨率。我也正在创建其他结构来帮助我按照我想要的方式绘制colorbar
:
require(RColorBrewer)
mat.intervals <- cut(mat,breaks=6)
interval.mat <- matrix(mat.intervals,nrow=50,ncol=1000,dimnames=list(rownames(mat),colnames(mat)))
interval.cols <- brewer.pal(6,"Set2")
names(interval.cols) <- levels(mat.intervals)
require(reshape2)
interval.df <- reshape2::melt(interval.mat,varnames=c("gene","sample"),value.name="expr")
interval.cols2 <- rep(interval.cols, each=ncol(mat))
color.df <- data.frame(range=c(0:(2*length(interval.cols)-1)),colors=c(0:(2*length(interval.cols)-1)))
color.df <- setNames(data.frame(color.df$range,color.df$colors),NULL)
for (i in 1:(2*length(interval.cols))) {
color.df[[2]][[i]] <- interval.cols[[(i + 1) / 2]]
color.df[[1]][[i]] <- i/(2*length(interval.cols))-(i %% 2)/(2*length(interval.cols))
}
他们我生成的数据我知道样本1-500是一个簇,样本501:1000是另一个,所以我标记它们:
interval.df$cluster <- NA
interval.df$cluster[which(interval.df$sample %in% paste("s",1:500,sep="."))] <- "A"
interval.df$cluster[which(interval.df$sample %in% paste("s",501:1000,sep="."))] <- "B"
我认为添加一个没有颜色和间隔的样本会在heatmap
图中创建一个看起来像一个facet边框的白色列:
divider.df <- data.frame(gene=unique(interval.df$gene),sample=NA,expr=NA,cluster=NA)
interval.df <- rbind(dplyr::filter(interval.df,cluster == "A"),divider.df,dplyr::filter(interval.df,cluster == "B"))
现在我尝试绘图:
#add ticks for each cluster
tick.vals <- c("s.158","s.617")
tick.text <- c("A","B")
require(plotly)
plot_ly(z=c(interval.df$expr),x=interval.df$sample,y=interval.df$gene,colors=interval.cols2,type="heatmap",colorscale=color.df,
colorbar=list(title="score",tickmode="array",tickvals=c(1:6),ticktext=names(interval.cols),len=0.2,outlinecolor="white",bordercolor="white",borderwidth=5,bgcolor="white")) %>%
layout(xaxis = list(title = 'Cluster',tickmode = 'array',tickvals = tick.vals,ticktext = tick.text))
知道如何在两个集群之间实现这样的方面边界吗?
你的例子非常复杂,所以我把它简化为一个最小的例子,专注于你在热图的象限中寻找的差距。
改编自绘图网站上的例子,here。
library(plotly)
m <- matrix(rnorm(9), nrow = 3, ncol = 3)
p <- plot_ly(
x = c("a", "b", "c"), y = c("d", "e", "f"),
z = m, type = "heatmap"
)
subplot(p, p, p, p, shareX = TRUE, shareY = TRUE, nrows = 2)
如果为每个象限创建一个绘图对象,然后使用subplot
,您将得到与此类似的结果:
注:我已经删除了这个图例,因为它与facet重复,你可以将它们合并为一个。