参数数量在编译时确定的 Lambda 函数

问题描述 投票:0回答:5

我想声明一个具有 N 个参数的 lambda 函数,其中 N 是模板参数。类似...

template <int N>
class A {
    std::function<void (double, ..., double)> func;
                        // exactly n inputs
};

我想不出用元函数范例来做到这一点的方法。

c++ templates c++11 lambda c++14
5个回答
14
投票

您可以使用嵌套的 typedef

n_ary_function
编写模板
type
。该类型可以如下使用:

template <int N>
class A {
    typename n_ary_function<N, double>::type func;
};

以下代码片段包含

n_ary_function
的定义:

template <std::size_t N, typename Type, typename ...Types>
struct n_ary_function
{
    using type = typename n_ary_function<N - 1, Type, Type, Types...>::type;
};

template <typename Type, typename ...Types>
struct n_ary_function<0, Type, Types...>
{
    using type = std::function<void(Types...)>;
};

2
投票

template
采用模板、计数和类型,并使用类型的
N
副本调用模板:

template<template<class...>class target, unsigned N, class T, class... Ts>
struct repeat_type_N: repeat_type_N<target, N-1, T, T, Ts...> {};
template<template<class...>class target, class T, class... Ts>
struct repeat_type_N<target, 0, T, Ts...> {
  typedef target<Ts...> type;
};
template<template<class...>class target, unsigned N, class T>
using repeat_type_N_times = typename repeat_type_N<target, N, T>::type;

现在,我们使用它:

template<typename... Ts> using operation=void(Ts...);
template<unsigned N, class T> using N_ary_op = repeat_type_N_times< operation, N, T >;
template<unsigned N> using N_double_func = N_ary_op<N,double>;

我们测试一下:

void three_doubles(double, double, double) {}

int main() {
  N_double_func<3>* ptr = three_doubles;
  std::function< N_double_func<3> > f = three_doubles;
}

并获胜。

您到底使用

double, double, double
做什么完全取决于您在上述系统中的情况。例如,您可以使用 lambda 来初始化
std::function

您可以将

double, double, double
打包到
template<class...>struct type_list{};
中,这样您就可以将其作为一个参数传递给另一个
template
,然后专门对其进行解包。

A

repeat_type
对于大
N
具有较少的递归:

// package for types.  The typedef saves characters later, and is a common pattern in my packages:
template<class...>struct types{typedef types type;};

// Takes a target and a `types`, and applies it.  Note that the base has no implementation
// which leads to errors if you pass a non-`types<>` as the second argument:
template<template<class...>class target, class types> struct apply_types;
template<template<class...>class target, class... Ts>
struct apply_types<target, types<Ts...>>{
  typedef target<Ts...> type;
};
// alias boilerplate:
template<template<class...>class target, class types>
using apply_types_t=typename apply_types<target,types>::type;

// divide and conquer, recursively:
template<unsigned N, class T, class Types=types<>> struct make_types:make_types<
  (N+1)/2, T, typename make_types<N/2, T, Types>::type
> {};

// terminate recursion at 0 and 1:
template<class T, class... Types> struct make_types<1, T, types<Types...>>:types<T,Types...> {};
template<class T, class Types> struct make_types<0, T, Types>:Types{};

// alias boilerplate:
template<unsigned N, class T>
using make_types_t=typename make_types<N,T>::type;

// all of the above reduces `repeat_type_N_t` to a one-liner:    
template<template<class...>class target, unsigned N, class T>
using repeat_type_N_times = apply_types_t<target, make_types_t<N,T>>;

对于大型

N
,上述可以显着减少编译时间,并处理
template
堆栈溢出。


0
投票

您不能直接执行此操作。

可以做这样的事情

template <unsigned N> class UniformTuple;

template <>
class UniformTuple <0>
{
};

template <unsigned N>
class UniformTuple : public UniformTuple <N-1>
{
public:

    template <typename... Args>
    UniformTuple (double arg, Args... args)
    : UniformTuple <N-1> (args...)
    , m_value (arg)
    {
    }

private:

    double m_value;
};

template <int N>
class A
{
    std :: function <void (const UniformTuple <N> &)> func;
};

0
投票

为了完整起见,这是一个不使用递归的解决方案:

template <class Ret, class Arg, class Idx>
struct n_ary_function_;

template <class Ret, class Arg, std::size_t... Idx>
struct n_ary_function_<Ret, Arg, std::index_sequence<Idx...>> {
    template <class T, std::size_t>
    using id = T;

    using type = std::function<Ret(id<Arg, Idx>...)>;
};

template <class Ret, class Arg, std::size_t N>
using n_ary_function = typename n_ary_function_<
    Ret, Arg, std::make_index_sequence<N>
>::type;

在 Coliru 上观看直播


0
投票

NoSid 的解决方案非常有创意(本质上是一一“追加”类型)。我编写的另一个解决方案可能需要更少的脑力劳动,如下所示使用

std::index_sequence
(这是创建未知大小的参数包的一种非常自然的方法):

#include <utility>
#include <functional>
#include <type_traits>

template<typename T, long U>
struct reduce 
{
    using type = T;
};

template<typename U, typename IndexSequence>
struct FunctionHolderImpl;

template<typename U, long ... Indices>
struct FunctionHolderImpl<U, std::index_sequence<Indices...>>
{
    using value = std::function<void(typename reduce<U, Indices>::type...)>;
};

template<long N>
struct FunctionHolder
{
    using func = FunctionHolderImpl<double, std::make_index_sequence<N>>::value;
};
© www.soinside.com 2019 - 2024. All rights reserved.