将浮点数转换为字符串

问题描述 投票:0回答:13

如何在 C/C++ 中不使用库函数将浮点整数转换为字符串

sprintf

我正在寻找一个功能,例如

char *ftoa(float num)
num
转换为字符串并返回它。

ftoa(3.1415)
应该返回
"3.1415"

c++ c floating-point
13个回答
19
投票

根据Sophy Pal的回答,这是一个稍微完整的解决方案,考虑了数字零、NaN、无穷大、负数和科学记数法。尽管 sprintf 仍然提供更准确的字符串表示。

/* 
   Double to ASCII Conversion without sprintf.
   Roughly equivalent to: sprintf(s, "%.14g", n);
*/

#include <math.h>
#include <string.h>
// For printf
#include <stdio.h>

static double PRECISION = 0.00000000000001;
static int MAX_NUMBER_STRING_SIZE = 32;

/**
 * Double to ASCII
 */
char * dtoa(char *s, double n) {
    // handle special cases
    if (isnan(n)) {
        strcpy(s, "nan");
    } else if (isinf(n)) {
        strcpy(s, "inf");
    } else if (n == 0.0) {
        strcpy(s, "0");
    } else {
        int digit, m, m1;
        char *c = s;
        int neg = (n < 0);
        if (neg)
            n = -n;
        // calculate magnitude
        m = log10(n);
        int useExp = (m >= 14 || (neg && m >= 9) || m <= -9);
        if (neg)
            *(c++) = '-';
        // set up for scientific notation
        if (useExp) {
            if (m < 0)
               m -= 1.0;
            n = n / pow(10.0, m);
            m1 = m;
            m = 0;
        }
        if (m < 1.0) {
            m = 0;
        }
        // convert the number
        while (n > PRECISION || m >= 0) {
            double weight = pow(10.0, m);
            if (weight > 0 && !isinf(weight)) {
                digit = floor(n / weight);
                n -= (digit * weight);
                *(c++) = '0' + digit;
            }
            if (m == 0 && n > 0)
                *(c++) = '.';
            m--;
        }
        if (useExp) {
            // convert the exponent
            int i, j;
            *(c++) = 'e';
            if (m1 > 0) {
                *(c++) = '+';
            } else {
                *(c++) = '-';
                m1 = -m1;
            }
            m = 0;
            while (m1 > 0) {
                *(c++) = '0' + m1 % 10;
                m1 /= 10;
                m++;
            }
            c -= m;
            for (i = 0, j = m-1; i<j; i++, j--) {
                // swap without temporary
                c[i] ^= c[j];
                c[j] ^= c[i];
                c[i] ^= c[j];
            }
            c += m;
        }
        *(c) = '\0';
    }
    return s;
}

int main(int argc, char** argv) {

    int i;
    char s[MAX_NUMBER_STRING_SIZE];
    double d[] = {
        0.0,
        42.0,
        1234567.89012345,
        0.000000000000018,
        555555.55555555555555555,
        -888888888888888.8888888,
        111111111111111111111111.2222222222
    };
    for (i = 0; i < 7; i++) {
        printf("%d: printf: %.14g, dtoa: %s\n", i+1, d[i], dtoa(s, d[i]));
    }
}

输出:

  1. printf:0,dtoa:0
  2. printf:42,dtoa:42
  3. printf:1234567.8901234,dtoa:1234567.89012344996444
  4. printf:1.8e-14,dtoa:1.79999999999999e-14
  5. printf:555555.55555556,dtoa:555555.55555555550381
  6. printf:-8.8888888888889e+14,dtoa:-8.88888888888888e+14
  7. printf:1.1111111111111e+23,dtoa:1.11111111111111e+23

11
投票

当你处理 fp 数字时,它可能会变得非常复杂,但算法很简单,类似于 edgar holleis 的答案;荣誉!它很复杂,因为当您处理浮点数时,根据您选择的精度,计算结果会有点偏差。这就是为什么将浮点数与零进行比较并不是好的编程习惯。

但是有一个答案,这是我实现它的尝试。在这里,我使用了一个容差值,这样您就不会最终计算太多小数位,从而导致无限循环。我确信可能有更好的解决方案,但这应该有助于您更好地理解如何做到这一点。

char fstr[80];
float num = 2.55f;
int m = log10(num);
int digit;
float tolerance = .0001f;

while (num > 0 + precision)
{
    float weight = pow(10.0f, m);
    digit = floor(num / weight);
    num -= (digit*weight);
    *(fstr++)= '0' + digit;
    if (m == 0)
        *(fstr++) = '.';
    m--;
}
*(fstr) = '\0';

6
投票

您可以使用C++20

std::format
{fmt}库
std::format
基于,将浮点数转换为字符串,例如:

std::string s = std::format("{}", M_PI);

sprintf
相比,此方法的优点是
std::format
为您提供最短的十进制表示形式并保证往返。


5
投票
  1. 使用
    log
    函数找出您的数字的大小
    m
    。如果幅度为负,则打印
    "0."
    和适量的零。
  2. 连续除以
    10^m
    并将结果转换为int以获得小数位。
    m--
    代表下一个数字。
  3. 如果您遇到
    m==0
    ,请不要忘记打印小数点
    "."
  4. 几个数字后断开。如果
    m>0
    当你中断时,不要忘记打印
    "E"
    itoa(m)

除了

log
函数之外,您还可以通过位移和校正指数偏移来直接提取指数(请参阅 IEEE 754)。 Java 有一个 double-to-bits 函数来获取二进制表示。


3
投票
 /*
  * Program to convert float number to string without using sprintf
  */

#include "iostream"    
#include "string"    
#include "math.h"

# define PRECISION 5

using namespace std;

char*  floatToString(float num)
{
   int whole_part = num;
   int digit = 0, reminder =0;
   int log_value = log10(num), index = log_value;
   long wt =0;

   // String containg result
   char* str = new char[20];

   //Initilise stirng to zero
   memset(str, 0 ,20);

   //Extract the whole part from float num
   for(int  i = 1 ; i < log_value + 2 ; i++)
   {
       wt  =  pow(10.0,i);
       reminder = whole_part  %  wt;
       digit = (reminder - digit) / (wt/10);

       //Store digit in string
       str[index--] = digit + 48;              // ASCII value of digit  = digit + 48
       if (index == -1)
          break;    
   }

    index = log_value + 1;
    str[index] = '.';

   float fraction_part  = num - whole_part;
   float tmp1 = fraction_part,  tmp =0;

   //Extract the fraction part from  num
   for( int i= 1; i < PRECISION; i++)
   {
      wt =10; 
      tmp  = tmp1 * wt;
      digit = tmp;

      //Store digit in string
      str[++index] = digit +48;           // ASCII value of digit  = digit + 48
      tmp1 = tmp - digit;
   }    

   return str;
}


//Main program
void main()
{
    int i;
    float f = 123456.789;
    char* str =  floatToString(f);
    cout  << endl <<  str;
    cin >> i;
    delete [] str;
}

1
投票

您有两个主要问题:

  1. 将位表示转换为字符串
  2. 分配足够的内存来存储字符。

解决第二部分的最简单方法是为每个可能的答案分配足够大的块。从那开始。稍后你会想要变得更聪明,但在解决问题的数字部分之前不要打扰。

您有两套工具可用于处理问题的数字部分:直接位操作(屏蔽、移位等)和算术运算(*、+、/,加上可能的数学函数链接

log()
)。

原则上,您可以直接处理按位表示,但如果将来浮点表示格式发生变化,则无法移植。 edgar.holleis 建议的方法应该是可移植的。


1
投票
刚刚在

https://code.google.com/p/stringencoders/ 找到了非常好的实现

size_t modp_dtoa(double value, char* str, int prec) { /* Hacky test for NaN * under -fast-math this won't work, but then you also won't * have correct nan values anyways. The alternative is * to link with libmath (bad) or hack IEEE double bits (bad) */ if (! (value == value)) { str[0] = 'n'; str[1] = 'a'; str[2] = 'n'; str[3] = '\0'; return (size_t)3; } /* if input is larger than thres_max, revert to exponential */ const double thres_max = (double)(0x7FFFFFFF); double diff = 0.0; char* wstr = str; if (prec < 0) { prec = 0; } else if (prec > 9) { /* precision of >= 10 can lead to overflow errors */ prec = 9; } /* we'll work in positive values and deal with the negative sign issue later */ int neg = 0; if (value < 0) { neg = 1; value = -value; } int whole = (int) value; double tmp = (value - whole) * powers_of_10[prec]; uint32_t frac = (uint32_t)(tmp); diff = tmp - frac; if (diff > 0.5) { ++frac; /* handle rollover, e.g. case 0.99 with prec 1 is 1.0 */ if (frac >= powers_of_10[prec]) { frac = 0; ++whole; } } else if (diff == 0.5 && ((frac == 0) || (frac & 1))) { /* if halfway, round up if odd, OR if last digit is 0. That last part is strange */ ++frac; } /* for very large numbers switch back to native sprintf for exponentials. anyone want to write code to replace this? */ /* normal printf behavior is to print EVERY whole number digit which can be 100s of characters overflowing your buffers == bad */ if (value > thres_max) { sprintf(str, "%e", neg ? -value : value); return strlen(str); } if (prec == 0) { diff = value - whole; if (diff > 0.5) { /* greater than 0.5, round up, e.g. 1.6 -> 2 */ ++whole; } else if (diff == 0.5 && (whole & 1)) { /* exactly 0.5 and ODD, then round up */ /* 1.5 -> 2, but 2.5 -> 2 */ ++whole; } } else { int count = prec; // now do fractional part, as an unsigned number do { --count; *wstr++ = (char)(48 + (frac % 10)); } while (frac /= 10); // add extra 0s while (count-- > 0) *wstr++ = '0'; // add decimal *wstr++ = '.'; } // do whole part // Take care of sign // Conversion. Number is reversed. do *wstr++ = (char)(48 + (whole % 10)); while (whole /= 10); if (neg) { *wstr++ = '-'; } *wstr='\0'; strreverse(str, wstr-1); return (size_t)(wstr - str); }
    

0
投票
这就是我的想法;它非常高效且非常简单。它假设您的系统有

itoa

#include <math.h> #include <string.h> /* return decimal part of val */ int dec(float val) { int mult = floor(val); while (floor(val) != ceil(val)) { mult *= 10; val *= 10; } return floor(val) - mult; } /* convert a double to a string */ char *ftoa(float val, char *str) { if (isnan(n)) { strcpy(str, "NaN"); return str; } else if (isinf(n)) { strcpy(str, "inf"); return str; } char leading_integer[31] = {0}; // 63 instead of 31 for 64-bit systems char trailing_decimal[31] = {0}; // 63 instead of 31 for 64-bit systems /* fill string with leading integer */ itoa(floor(val), leading_integer, 10); /* fill string with the decimal part */ itoa(dec(val), trailing_decimal, 10); /* set given string to full decimal */ strcpy(str, leading_integer); strcat(str, "."); strcat(str, trailing_decimal); return str; }

在线尝试!


0
投票
// This working code does: // 1. Does not use sprintf as requested. // 2. Gets some wide text from an editbox4 in VS2017 // 3. Converting that text to a double floating point number // 4. Converts number to a wide string using ISO format, (StringCbPrintf replaced sprintf) // 5. Transfers that text number back to another editbox5 for confirmation display as text // int const arraysize = 30; wchar_t szItemName[arraysize]; // receives name of item if (!GetDlgItemText(hwnd, IDC_EDIT4, szItemName, arraysize )) *szItemName = 0; double value = _wtof(szItemName); wchar_t szname2[arraysize]; size_t cbDest = arraysize * sizeof(WCHAR); LPCTSTR pszFormat = TEXT("%f"); HRESULT hr = StringCbPrintf(szname2, cbDest, pszFormat,value); //ISO format has buffer checking SetDlgItemTextW(hwnd, IDC_EDIT5, szname2);
    

0
投票
如果您想要基于

Grisu2 算法非常快速的实现,我建议您查看 Lemire 教授的 github 上的 此文件

由于仅链接答案不被接受,我将复制粘贴代码,感谢:Florian Grisu 的算法和 Daniel Lemire 教授的 C++ 移植,并提供了非常有趣和启发性的评论:

#include <cstring> #include <cstdint> #include <array> namespace simdjson { namespace internal { // Skipped comments namespace dtoa_impl { template <typename Target, typename Source> Target reinterpret_bits(const Source source) { static_assert(sizeof(Target) == sizeof(Source), "size mismatch"); Target target; std::memcpy(&target, &source, sizeof(Source)); return target; } struct diyfp // f * 2^e { static constexpr int kPrecision = 64; // = q std::uint64_t f = 0; int e = 0; constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {} /*! @brief returns x - y @pre x.e == y.e and x.f >= y.f */ static diyfp sub(const diyfp &x, const diyfp &y) noexcept { return {x.f - y.f, x.e}; } /*! @brief returns x * y @note The result is rounded. (Only the upper q bits are returned.) */ static diyfp mul(const diyfp &x, const diyfp &y) noexcept { static_assert(kPrecision == 64, "internal error"); // Skipped const std::uint64_t u_lo = x.f & 0xFFFFFFFFu; const std::uint64_t u_hi = x.f >> 32u; const std::uint64_t v_lo = y.f & 0xFFFFFFFFu; const std::uint64_t v_hi = y.f >> 32u; const std::uint64_t p0 = u_lo * v_lo; const std::uint64_t p1 = u_lo * v_hi; const std::uint64_t p2 = u_hi * v_lo; const std::uint64_t p3 = u_hi * v_hi; const std::uint64_t p0_hi = p0 >> 32u; const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu; const std::uint64_t p1_hi = p1 >> 32u; const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu; const std::uint64_t p2_hi = p2 >> 32u; std::uint64_t Q = p0_hi + p1_lo + p2_lo; // The full product might now be computed as // // p_hi = p3 + p2_hi + p1_hi + (Q >> 32) // p_lo = p0_lo + (Q << 32) // // But in this particular case here, the full p_lo is not required. // Effectively we only need to add the highest bit in p_lo to p_hi (and // Q_hi + 1 does not overflow). Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u); return {h, x.e + y.e + 64}; } /*! @brief normalize x such that the significand is >= 2^(q-1) @pre x.f != 0 */ static diyfp normalize(diyfp x) noexcept { while ((x.f >> 63u) == 0) { x.f <<= 1u; x.e--; } return x; } /*! @brief normalize x such that the result has the exponent E @pre e >= x.e and the upper e - x.e bits of x.f must be zero. */ static diyfp normalize_to(const diyfp &x, const int target_exponent) noexcept { const int delta = x.e - target_exponent; return {x.f << delta, target_exponent}; } }; struct boundaries { diyfp w; diyfp minus; diyfp plus; }; /*! Compute the (normalized) diyfp representing the input number 'value' and its boundaries. @pre value must be finite and positive */ template <typename FloatType> boundaries compute_boundaries(FloatType value) { // Convert the IEEE representation into a diyfp. // // If v is denormal: // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1)) // If v is normalized: // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1)) static_assert(std::numeric_limits<FloatType>::is_iec559, "internal error: dtoa_short requires an IEEE-754 " "floating-point implementation"); constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit) constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1); constexpr int kMinExp = 1 - kBias; constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1) using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t>::type; const std::uint64_t bits = reinterpret_bits<bits_type>(value); const std::uint64_t E = bits >> (kPrecision - 1); const std::uint64_t F = bits & (kHiddenBit - 1); const bool is_denormal = E == 0; const diyfp v = is_denormal ? diyfp(F, kMinExp) : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias); // Compute the boundaries m- and m+ of the floating-point value // v = f * 2^e. // // Determine v- and v+, the floating-point predecessor and successor if v, // respectively. // // v- = v - 2^e if f != 2^(p-1) or e == e_min (A) // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B) // // v+ = v + 2^e // // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_ // between m- and m+ round to v, regardless of how the input rounding // algorithm breaks ties. // // ---+-------------+-------------+-------------+-------------+--- (A) // v- m- v m+ v+ // // -----------------+------+------+-------------+-------------+--- (B) // v- m- v m+ v+ const bool lower_boundary_is_closer = F == 0 && E > 1; const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); const diyfp m_minus = lower_boundary_is_closer ? diyfp(4 * v.f - 1, v.e - 2) // (B) : diyfp(2 * v.f - 1, v.e - 1); // (A) // Determine the normalized w+ = m+. const diyfp w_plus = diyfp::normalize(m_plus); // Determine w- = m- such that e_(w-) = e_(w+). const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); return {diyfp::normalize(v), w_minus, w_plus}; } // Had to skip this constexpr int kAlpha = -60; constexpr int kGamma = -32; struct cached_power // c = f * 2^e ~= 10^k { std::uint64_t f; int e; int k; }; /*! For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c satisfies (Definition 3.2 from [1]) alpha <= e_c + e + q <= gamma. */ inline cached_power get_cached_power_for_binary_exponent(int e) { constexpr int kCachedPowersMinDecExp = -300; constexpr int kCachedPowersDecStep = 8; static constexpr std::array<cached_power, 79> kCachedPowers = {{ {0xAB70FE17C79AC6CA, -1060, -300}, {0xFF77B1FCBEBCDC4F, -1034, -292}, {0xBE5691EF416BD60C, -1007, -284}, {0x8DD01FAD907FFC3C, -980, -276}, {0xD3515C2831559A83, -954, -268}, {0x9D71AC8FADA6C9B5, -927, -260}, {0xEA9C227723EE8BCB, -901, -252}, {0xAECC49914078536D, -874, -244}, {0x823C12795DB6CE57, -847, -236}, {0xC21094364DFB5637, -821, -228}, {0x9096EA6F3848984F, -794, -220}, {0xD77485CB25823AC7, -768, -212}, {0xA086CFCD97BF97F4, -741, -204}, {0xEF340A98172AACE5, -715, -196}, {0xB23867FB2A35B28E, -688, -188}, {0x84C8D4DFD2C63F3B, -661, -180}, {0xC5DD44271AD3CDBA, -635, -172}, {0x936B9FCEBB25C996, -608, -164}, {0xDBAC6C247D62A584, -582, -156}, {0xA3AB66580D5FDAF6, -555, -148}, {0xF3E2F893DEC3F126, -529, -140}, {0xB5B5ADA8AAFF80B8, -502, -132}, {0x87625F056C7C4A8B, -475, -124}, {0xC9BCFF6034C13053, -449, -116}, {0x964E858C91BA2655, -422, -108}, {0xDFF9772470297EBD, -396, -100}, {0xA6DFBD9FB8E5B88F, -369, -92}, {0xF8A95FCF88747D94, -343, -84}, {0xB94470938FA89BCF, -316, -76}, {0x8A08F0F8BF0F156B, -289, -68}, {0xCDB02555653131B6, -263, -60}, {0x993FE2C6D07B7FAC, -236, -52}, {0xE45C10C42A2B3B06, -210, -44}, {0xAA242499697392D3, -183, -36}, {0xFD87B5F28300CA0E, -157, -28}, {0xBCE5086492111AEB, -130, -20}, {0x8CBCCC096F5088CC, -103, -12}, {0xD1B71758E219652C, -77, -4}, {0x9C40000000000000, -50, 4}, {0xE8D4A51000000000, -24, 12}, {0xAD78EBC5AC620000, 3, 20}, {0x813F3978F8940984, 30, 28}, {0xC097CE7BC90715B3, 56, 36}, {0x8F7E32CE7BEA5C70, 83, 44}, {0xD5D238A4ABE98068, 109, 52}, {0x9F4F2726179A2245, 136, 60}, {0xED63A231D4C4FB27, 162, 68}, {0xB0DE65388CC8ADA8, 189, 76}, {0x83C7088E1AAB65DB, 216, 84}, {0xC45D1DF942711D9A, 242, 92}, {0x924D692CA61BE758, 269, 100}, {0xDA01EE641A708DEA, 295, 108}, {0xA26DA3999AEF774A, 322, 116}, {0xF209787BB47D6B85, 348, 124}, {0xB454E4A179DD1877, 375, 132}, {0x865B86925B9BC5C2, 402, 140}, {0xC83553C5C8965D3D, 428, 148}, {0x952AB45CFA97A0B3, 455, 156}, {0xDE469FBD99A05FE3, 481, 164}, {0xA59BC234DB398C25, 508, 172}, {0xF6C69A72A3989F5C, 534, 180}, {0xB7DCBF5354E9BECE, 561, 188}, {0x88FCF317F22241E2, 588, 196}, {0xCC20CE9BD35C78A5, 614, 204}, {0x98165AF37B2153DF, 641, 212}, {0xE2A0B5DC971F303A, 667, 220}, {0xA8D9D1535CE3B396, 694, 228}, {0xFB9B7CD9A4A7443C, 720, 236}, {0xBB764C4CA7A44410, 747, 244}, {0x8BAB8EEFB6409C1A, 774, 252}, {0xD01FEF10A657842C, 800, 260}, {0x9B10A4E5E9913129, 827, 268}, {0xE7109BFBA19C0C9D, 853, 276}, {0xAC2820D9623BF429, 880, 284}, {0x80444B5E7AA7CF85, 907, 292}, {0xBF21E44003ACDD2D, 933, 300}, {0x8E679C2F5E44FF8F, 960, 308}, {0xD433179D9C8CB841, 986, 316}, {0x9E19DB92B4E31BA9, 1013, 324}, }}; // This computation gives exactly the same results for k as // k = ceil((kAlpha - e - 1) * 0.30102999566398114) // for |e| <= 1500, but doesn't require floating-point operations. // NB: log_10(2) ~= 78913 / 2^18 const int f = kAlpha - e - 1; const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0); const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)]; return cached; } /*! For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. For n == 0, returns 1 and sets pow10 := 1. */ inline int find_largest_pow10(const std::uint32_t n, std::uint32_t &pow10) { // LCOV_EXCL_START if (n >= 1000000000) { pow10 = 1000000000; return 10; } // LCOV_EXCL_STOP else if (n >= 100000000) { pow10 = 100000000; return 9; } else if (n >= 10000000) { pow10 = 10000000; return 8; } else if (n >= 1000000) { pow10 = 1000000; return 7; } else if (n >= 100000) { pow10 = 100000; return 6; } else if (n >= 10000) { pow10 = 10000; return 5; } else if (n >= 1000) { pow10 = 1000; return 4; } else if (n >= 100) { pow10 = 100; return 3; } else if (n >= 10) { pow10 = 10; return 2; } else { pow10 = 1; return 1; } } inline void grisu2_round(char *buf, int len, std::uint64_t dist, std::uint64_t delta, std::uint64_t rest, std::uint64_t ten_k) { // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // ten_k // <------> // <---- rest ----> // --------------[------------------+----+--------------]-------------- // w V // = buf * 10^k // // ten_k represents a unit-in-the-last-place in the decimal representation // stored in buf. // Decrement buf by ten_k while this takes buf closer to w. // The tests are written in this order to avoid overflow in unsigned // integer arithmetic. while (rest < dist && delta - rest >= ten_k && (rest + ten_k < dist || dist - rest > rest + ten_k - dist)) { buf[len - 1]--; rest += ten_k; } } /*! Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. M- and M+ must be normalized and share the same exponent -60 <= e <= -32. */ inline void grisu2_digit_gen(char *buffer, int &length, int &decimal_exponent, diyfp M_minus, diyfp w, diyfp M_plus) { static_assert(kAlpha >= -60, "internal error"); static_assert(kGamma <= -32, "internal error"); // Generates the digits (and the exponent) of a decimal floating-point // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= // gamma. // // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // Grisu2 generates the digits of M+ from left to right and stops as soon as // V is in [M-,M+]. std::uint64_t delta = diyfp::sub(M_plus, M_minus) .f; // (significand of (M+ - M-), implicit exponent is e) std::uint64_t dist = diyfp::sub(M_plus, w) .f; // (significand of (M+ - w ), implicit exponent is e) // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0): // // M+ = f * 2^e // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e // = ((p1 ) * 2^-e + (p2 )) * 2^e // = p1 + p2 * 2^e const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e); auto p1 = static_cast<std::uint32_t>( M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.) std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e // 1) // // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0] std::uint32_t pow10; const int k = find_largest_pow10(p1, pow10); // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1) // // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1)) // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1)) // // M+ = p1 + p2 * 2^e // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e // = d[k-1] * 10^(k-1) + ( rest) * 2^e // // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0) // // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0] // // but stop as soon as // // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e int n = k; while (n > 0) { // Invariants: // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k) // pow10 = 10^(n-1) <= p1 < 10^n // const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1) const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1) // // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e) // buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(n-1) + (r + p2 * 2^e) // p1 = r; n--; // // M+ = buffer * 10^n + (p1 + p2 * 2^e) // pow10 = 10^n // // Now check if enough digits have been generated. // Compute // // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e // // Note: // Since rest and delta share the same exponent e, it suffices to // compare the significands. const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2; if (rest <= delta) { // V = buffer * 10^n, with M- <= V <= M+. decimal_exponent += n; // We may now just stop. But instead look if the buffer could be // decremented to bring V closer to w. // // pow10 = 10^n is now 1 ulp in the decimal representation V. // The rounding procedure works with diyfp's with an implicit // exponent of e. // // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e // const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e; grisu2_round(buffer, length, dist, delta, rest, ten_n); return; } pow10 /= 10; // // pow10 = 10^(n-1) <= p1 < 10^n // Invariants restored. } // 2) // // The digits of the integral part have been generated: // // M+ = d[k-1]...d[1]d[0] + p2 * 2^e // = buffer + p2 * 2^e // // Now generate the digits of the fractional part p2 * 2^e. // // Note: // No decimal point is generated: the exponent is adjusted instead. // // p2 actually represents the fraction // // p2 * 2^e // = p2 / 2^-e // = d[-1] / 10^1 + d[-2] / 10^2 + ... // // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...) // // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...) // // using // // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e) // = ( d) * 2^-e + ( r) // // or // 10^m * p2 * 2^e = d + r * 2^e // // i.e. // // M+ = buffer + p2 * 2^e // = buffer + 10^-m * (d + r * 2^e) // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e // // and stop as soon as 10^-m * r * 2^e <= delta * 2^e int m = 0; for (;;) { // Invariant: // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) // * 2^e // = buffer * 10^-m + 10^-m * (p2 ) // * 2^e = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e = // buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + // (10*p2 mod 2^-e)) * 2^e // p2 *= 10; const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e // // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e)) // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e // buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e // p2 = r; m++; // // M+ = buffer * 10^-m + 10^-m * p2 * 2^e // Invariant restored. // Check if enough digits have been generated. // // 10^-m * p2 * 2^e <= delta * 2^e // p2 * 2^e <= 10^m * delta * 2^e // p2 <= 10^m * delta delta *= 10; dist *= 10; if (p2 <= delta) { break; } } // V = buffer * 10^-m, with M- <= V <= M+. decimal_exponent -= m; // 1 ulp in the decimal representation is now 10^-m. // Since delta and dist are now scaled by 10^m, we need to do the // same with ulp in order to keep the units in sync. // // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e // const std::uint64_t ten_m = one.f; grisu2_round(buffer, length, dist, delta, p2, ten_m); // By construction this algorithm generates the shortest possible decimal // number (Loitsch, Theorem 6.2) which rounds back to w. // For an input number of precision p, at least // // N = 1 + ceil(p * log_10(2)) // // decimal digits are sufficient to identify all binary floating-point // numbers (Matula, "In-and-Out conversions"). // This implies that the algorithm does not produce more than N decimal // digits. // // N = 17 for p = 53 (IEEE double precision) // N = 9 for p = 24 (IEEE single precision) } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ inline void grisu2(char *buf, int &len, int &decimal_exponent, diyfp m_minus, diyfp v, diyfp m_plus) { // --------(-----------------------+-----------------------)-------- (A) // m- v m+ // // --------------------(-----------+-----------------------)-------- (B) // m- v m+ // // First scale v (and m- and m+) such that the exponent is in the range // [alpha, gamma]. const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k // The exponent of the products is = v.e + c_minus_k.e + q and is in the range // [alpha,gamma] const diyfp w = diyfp::mul(v, c_minus_k); const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); const diyfp w_plus = diyfp::mul(m_plus, c_minus_k); // ----(---+---)---------------(---+---)---------------(---+---)---- // w- w w+ // = c*m- = c*v = c*m+ // // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and // w+ are now off by a small amount. // In fact: // // w - v * 10^k < 1 ulp // // To account for this inaccuracy, add resp. subtract 1 ulp. // // --------+---[---------------(---+---)---------------]---+-------- // w- M- w M+ w+ // // Now any number in [M-, M+] (bounds included) will round to w when input, // regardless of how the input rounding algorithm breaks ties. // // And digit_gen generates the shortest possible such number in [M-, M+]. // Note that this does not mean that Grisu2 always generates the shortest // possible number in the interval (m-, m+). const diyfp M_minus(w_minus.f + 1, w_minus.e); const diyfp M_plus(w_plus.f - 1, w_plus.e); decimal_exponent = -cached.k; // = -(-k) = k grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ template <typename FloatType> void grisu2(char *buf, int &len, int &decimal_exponent, FloatType value) { static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3, "internal error: not enough precision"); // If the neighbors (and boundaries) of 'value' are always computed for // double-precision numbers, all float's can be recovered using strtod (and // strtof). However, the resulting decimal representations are not exactly // "short". // // The documentation for 'std::to_chars' // (https://en.cppreference.com/w/cpp/utility/to_chars) says "value is // converted to a string as if by std::sprintf in the default ("C") locale" // and since sprintf promotes float's to double's, I think this is exactly // what 'std::to_chars' does. On the other hand, the documentation for // 'std::to_chars' requires that "parsing the representation using the // corresponding std::from_chars function recovers value exactly". That // indicates that single precision floating-point numbers should be recovered // using 'std::strtof'. // // NB: If the neighbors are computed for single-precision numbers, there is a // single float // (7.0385307e-26f) which can't be recovered using strtod. The resulting // double precision value is off by 1 ulp. #if 0 const boundaries w = compute_boundaries(static_cast<double>(value)); #else const boundaries w = compute_boundaries(value); #endif grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); } /*! @brief appends a decimal representation of e to buf @return a pointer to the element following the exponent. @pre -1000 < e < 1000 */ inline char *append_exponent(char *buf, int e) { if (e < 0) { e = -e; *buf++ = '-'; } else { *buf++ = '+'; } auto k = static_cast<std::uint32_t>(e); if (k < 10) { // Always print at least two digits in the exponent. // This is for compatibility with printf("%g"). *buf++ = '0'; *buf++ = static_cast<char>('0' + k); } else if (k < 100) { *buf++ = static_cast<char>('0' + k / 10); k %= 10; *buf++ = static_cast<char>('0' + k); } else { *buf++ = static_cast<char>('0' + k / 100); k %= 100; *buf++ = static_cast<char>('0' + k / 10); k %= 10; *buf++ = static_cast<char>('0' + k); } return buf; } /*! @brief prettify v = buf * 10^decimal_exponent If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point notation. Otherwise it will be printed in exponential notation. @pre min_exp < 0 @pre max_exp > 0 */ inline char *format_buffer(char *buf, int len, int decimal_exponent, int min_exp, int max_exp) { const int k = len; const int n = len + decimal_exponent; // v = buf * 10^(n-k) // k is the length of the buffer (number of decimal digits) // n is the position of the decimal point relative to the start of the buffer. if (k <= n && n <= max_exp) { // digits[000] // len <= max_exp + 2 std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k)); // Make it look like a floating-point number (#362, #378) buf[n + 0] = '.'; buf[n + 1] = '0'; return buf + (static_cast<size_t>(n) + 2); } if (0 < n && n <= max_exp) { // dig.its // len <= max_digits10 + 1 std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n)); buf[n] = '.'; return buf + (static_cast<size_t>(k) + 1U); } if (min_exp < n && n <= 0) { // 0.[000]digits // len <= 2 + (-min_exp - 1) + max_digits10 std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k)); buf[0] = '0'; buf[1] = '.'; std::memset(buf + 2, '0', static_cast<size_t>(-n)); return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k)); } if (k == 1) { // dE+123 // len <= 1 + 5 buf += 1; } else { // d.igitsE+123 // len <= max_digits10 + 1 + 5 std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1); buf[1] = '.'; buf += 1 + static_cast<size_t>(k); } *buf++ = 'e'; return append_exponent(buf, n - 1); } } // namespace dtoa_impl /*! The format of the resulting decimal representation is similar to printf's %g format. Returns an iterator pointing past-the-end of the decimal representation. @note The input number must be finite, i.e. NaN's and Inf's are not supported. @note The buffer must be large enough. @note The result is NOT null-terminated. */ char *to_chars(char *first, const char *last, double value) { static_cast<void>(last); // maybe unused - fix warning if (value <= -0) { value = -value; *first++ = '-'; } if (value == 0) // +-0 { *first++ = '0'; // Make it look like a floating-point number (#362, #378) *first++ = '.'; *first++ = '0'; return first; } // Compute v = buffer * 10^decimal_exponent. // The decimal digits are stored in the buffer, which needs to be interpreted // as an unsigned decimal integer. // len is the length of the buffer, i.e. the number of decimal digits. int len = 0; int decimal_exponent = 0; dtoa_impl::grisu2(first, len, decimal_exponent, value); // Format the buffer like printf("%.*g", prec, value) constexpr int kMinExp = -4; constexpr int kMaxExp = std::numeric_limits<double>::digits10; return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); } } // namespace internal } // namespace simdjson
请注意,它可能不是最好的算法,因为一些互联网基准测试表明 YY 和 Ryū 算法都优于 Grisu3。但尽管如此,我希望您会发现它很有趣,这要归功于干净的代码和解释。由于SO施加的限制,我不得不删除一些评论,您可以在原始文件中或

here中找到有关缓存权力的解释


0
投票
我的实现

//convert a floating point number to a C++ literal string void ftoa(float value, char *str, int numberOfDecimals) { //find integer and fractional part float f_auxint, f_auxfract; f_auxfract = modff(value, &f_auxint); long intpart = long(f_auxint); long fractpart = long(floor((fabs(f_auxfract)*pow(10.0, float(numberOfDecimals)))+0.5)); //covert integer part and copy it to literal string ltoa(intpart, &str[0], 10); //add dot (decimal separator) int lnhg = strlen(str); str[lnhg] = '.'; lnhg += 1; //fill by '0' the rest of the destination string int aa = lnhg; for (size_t i = 0; i < numberOfDecimals; i++) { str[aa] = '0'; aa += 1; } str[aa] = '\0'; //covert fractional part in literal string char tempstr[10]; ltoa(fractpart, &tempstr[0], 10); //shift cursor position based on how many zero there were int bb = strlen(tempstr); while (bb < numberOfDecimals) { lnhg += 1; bb+=1; } //paste fractional part to rest of the destination string for (size_t i = 0; i < strlen(tempstr); i++) { str[lnhg] = tempstr[i]; lnhg+=1; } }
    

0
投票
STM32的gcc中没有

ftoa,所以有我的:

#include <math.h> void ftoa(float a, char* txt, char precision) { char string[6]; int roundoff = a; // getting rounded integer float remainder = 0; // declaring the numbers to the right of the decimal point int whole_remainder = 0; // declaring remainder variable remainder = a - roundoff; // calculating remainder itoa(roundoff,txt,10); strcat(txt,"."); whole_remainder = ceilf(remainder*(pow(10,precision))); // making the decimals into whole integers by multiplying itoa(whole_remainder,string,10); strcat(txt,string); }
    

-2
投票
这个要点可能会有所帮助:

https://gist.github.com/psych0der/6319244 基本思想是将整个部分和小数部分分开,然后将它们与中间的小数连接起来。

© www.soinside.com 2019 - 2024. All rights reserved.