# 3D图：x轴上的平滑图

##### 问题描述投票：2回答：2

``````from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import numpy as np
from scipy.stats import norm

fig = plt.figure()
ax = fig.gca(projection='3d')

xs = np.arange(-10, 10, 2)
verts = []
zs = [0.0, 1.0, 2.0, 3.0]

for z in zs:
ys = np.random.rand(len(xs))
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))

poly = PolyCollection(verts, facecolors=[mcolors.to_rgba('r', alpha=0.6),
mcolors.to_rgba('g', alpha=0.6),
mcolors.to_rgba('b', alpha=0.6),
mcolors.to_rgba('y', alpha=0.6)])
poly.set_alpha(0.7)
ax.set_xlabel('X')
ax.set_xlim3d(-10, 10)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, 4)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1)
plt.show()
``````

``````def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)

xs = get_xs()

dists = [1, 2, 3, 4]

def get_distribution_params(list_):
""" generates the distribution parameters (mu and sigma) for len(list_) distributions"""
mus = []
sigmas = []
for i in range(len(dists)):
mus.append(round((i + 1) + 0.1 * np.random.randint(0,10), 3))
sigmas.append(round((i + 1) * .01 * np.random.randint(0,10), 3))
return mus, sigmas

mus, sigmas = get_distribution_params(dists)

def get_distributions(list_, xs, mus, sigmas):
""" generates len(list_) normal distributions, with different mu and sigma values """
distributions = [] # distributions

for i in range(len(list_)):
x_ = xs
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
distributions.append(list(zip(x_, z_)))
#print(x_[60], z_[60])

return distributions

distributions = get_distributions(list_ = dists, xs = xs, mus = mus, sigmas = sigmas)
``````

python python-3.x matplotlib z-axis
##### 2个回答
0

``````def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)

xs = get_xs()
``````

``````xs = np.linspace(-4, 4, 80)
``````

``````z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
``````

[最后，我相信您应该适当地调整`xlim``ylim``zlim`，因为您交换了绘图的`y``z`尺寸并在与参考代码进行比较时更改了比例尺。] >

0