如何实现归并排序(来自 Cormen 和 Co 的《算法简介》)

问题描述 投票:0回答:6

我正在从 Cormen 和 Co. 学习算法,并且我在从他们的伪代码实现合并排序时遇到问题。我编译的:

$ gcc -Wall -g merge_sort.c

我有一个问题,因为数字:

2 4 5 7 1 2 3 6

结果是:

1 2 2 3 3 4 5 5 

我尝试仔细阅读伪代码,但这对我没有帮助。 我想知道我做错了什么。下面是我的代码:

#include <stdio.h>

#define SIZE 8

void merge(int *array_of_integers, int p, int q, int r) {
    int n1 = q - p + 1;
    int n2 = r - q; 
    int i, j, k;
    int left_array[n1 + 1];
    int right_array[n2 + 1];

    for (i = 0; i < n1; i++)
        left_array[i] = array_of_integers[p + i];
    for (j = 0; j < n2; j++)
        right_array[j] = array_of_integers[q + j];

    i = 0;
    j = 0;

    for (k = p; k < r; k++){
        if (left_array[i] <= right_array[j]) {
            array_of_integers[k] = left_array[i];
            i++;
        } else {
            array_of_integers[k] = right_array[j];
            j++;
        }   
    }
}

void merge_sort(int *array_of_integers, int p, int r) {
    if (p < r) {
        int q = (p + r) / 2;
        merge_sort(array_of_integers, p, q);
        merge_sort(array_of_integers, q + 1, r);
        merge(array_of_integers, p, q, r);
    }
}

void print_array(int *array_of_integers, int amout_of_integers) {
    int i;
    for(i = 0; i < amout_of_integers; i++)
        printf("%d ", array_of_integers[i]);
    puts("");
}

int main(void) {
    int dataset[] = { 2, 4, 5, 7, 1, 2, 3, 6 };

    print_array(dataset, SIZE);
    merge_sort(dataset, 0, SIZE);
    print_array(dataset, SIZE);

    return 0;
}

编辑:(正确的解决方案)

 void merge(int *array_of_integers, int p, int q, int r) {
     int n1 = q - p + 1;
     int n2 = r - q; 
     int i, j, k;
     int left_array[n1 + 1];
     int right_array[n2 + 1];

     left_array[n1] = 123456798;
     right_array[n2] = 123456798;

     for (i = 0; i < n1; i++)
         left_array[i] = array_of_integers[p + i];
     for (j = 0; j < n2; j++)
         right_array[j] = array_of_integers[q + j + 1];

     i = 0;
     j = 0;

     for (k = p; k <= r; k++) {
         if (left_array[i] <= right_array[j]) {
             array_of_integers[k] = left_array[i];
             i++;
         } else {
             array_of_integers[k] = right_array[j];
             j++;
         }
     }
 }

 void merge_sort(int *array_of_integers, int p, int r) {
     if(p < r) {
         int q = (p + r) / 2;
         merge_sort(array_of_integers, p, q);
         merge_sort(array_of_integers, q + 1, r);
         merge(array_of_integers, p, q, r);
     }
 }
c algorithm mergesort
6个回答
9
投票

您的代码中有两个问题。

第一,您需要澄清您传递的参数的含义。在merge_sort中,看起来p是第一个要排序的元素,r是最后一个要排序的元素。但是,在 main 中调用 merge_sort 的地方,它会传递 0 和 SIZE。这里,0是第一个要排序的元素,但SIZE不能是最后一个元素,因为它(大概)是要排序的元素数量。在您的示例中,您传递的是 8,但要排序的最后一个元素是 7。因此,请决定是否要更改 merge_sort 以使 r 为元素数,或者是否要更改 main 以传递 SIZE-1。类似地,在合并中,p 似乎是要合并的第一个元素,q 是第一个范围的最后一个元素(因此 q+1 是第二个范围的第一个元素),r 是第二个范围的最后一个元素。但是,当您从 array_of_integers 复制到 right_array 时,您是从 q+j 复制。当 j 为零时,这会复制第一个范围的最后一个元素,但您需要第二个范围的第一个元素。所以你需要弄清楚索引的这些用途。 (另外,left_array 和 right_array 只需要 n1 和 n2 个元素,而不需要 n1+1 和 n2+1。)还要检查 k 上的循环,

for(k = p; k < r; k++)
。该循环的继续条件应该是什么?

第二,当您合并 left_array 和 right_array 时,您没有考虑到数组可能为空的事实(因为所有元素之前都已从中复制出来),因此比较 left_array[i] 与 right_array[j] 不起作用因为 i 或 j 分别表示 left_array 或 right_array 之外的元素。例如,如果 i 已达到其极限 (n1),则不应进行比较。相反,您应该只从 right_array 中获取一个元素。


6
投票

这个虽然是用Java实现的,但逻辑显然是一样的。我已经考虑了埃里克回答中建议的所有要点。请检查代码,它是不言自明的。

import java.util.*;
class MergeSort
{

    public static void main(String args[])
    {
        int testArray[] = {1,3,5,3,1,7,8,9};
        mergeSort(testArray,0,testArray.length-1);
        System.out.println(Arrays.toString(testArray));
    }

    protected static void mergeSort(int arr[], int p, int r)
    {
        int q;
        if (p<r)
        {
            q = (p+r)/2;
            mergeSort(arr,p,q);
            mergeSort(arr, q+1, r);
            merge(arr,p,q,r);   
        }   
    }

    protected static void merge(int arr[], int p, int q, int r)
    {    
        int n = q-p+1;
        int m = r-q;

        int L[] = new int[n+1];
        int R[] = new int[m+1];
        int i,j,k;

        for(i=0; i< n; i++)
        {
            L[i] = arr[p+i];    
        }
        for(j=0; j< m; j++)
        {
            R[j] = arr[q+j+1];    
        }

        L[n] = Integer.MAX_VALUE;
        R[m] = Integer.MAX_VALUE;

        i = 0;
        j = 0;
        for(k = p; k<= r; k++)
        {

            if( L[i]<=R[j])
            {
                arr[k] = L[i];
                i = i+1;
            }
            else
            {
                arr[k] = R[j];
                j = j+1;

            }           
        }
    }
}

1
投票

Python实现

from math import inf


def merge(A, p, q, r):

    n1 = q - p + 1
    n2 = r - q

    L = [0] * (n1+1)
    R = [0] * (n2+1)

    for i in range(0, n1):
        L[i] = A[p + i]

    for j in range(0, n2):
        R[j] = A[q + j + 1]

    L[n1] = inf
    R[n2] = inf

    i = 0
    j = 0
    for k in range(p, r+1):
        if L[i] <= R[j]:
            A[k] = L[i]
            i = i + 1
        else:
            A[k] = R[j]
            j = j + 1


def mergesort(A, p, r):

    if p < r:
        q = (p + r)//2
        mergesort(A, p, q)
        mergesort(A, q + 1, r)
        merge(A, p, q, r)


A = [00, 11, 12, 13, 14, 15, 16, 17, 18, 2, 4,
     5, 7, 1, 2, 3, 6, 22, 23, 34, 56, 78, 77]

merge(A, 9, 12, 16)

print(A)

mergesort(A, 9, 16)
print(A)

print(A)

0
投票
This one worked for me

    // MergeSortRevisionAgain.cpp : Defines the entry point for the console application.
//Understanding merge sort
#include <iostream>

using std::cout;
using std::endl;


//The declaration of the merge sort function
void merge(int A[], int p, int q, int r);
int* mergeSort(int A[], int p, int r);


int main()
{

    /*My Code to test for the merge sort*/
    int myArray[]{ 2,3,5,7,1,4,7,9};
    int lengthOfArray = sizeof(myArray) / sizeof(myArray[1]);
    int* sortedOutput = mergeSort(myArray, 0, lengthOfArray-1);

    for (int i = 0; i <lengthOfArray; i++)
    {
        cout << sortedOutput[i] << " ";
    }

    cout << endl;


    return 0;
}


void merge(int A[], int p, int q, int r)
{
    //Declaration of number of variable in each half
    int n1 = q - p + 1;                                                             //1. n1 = q - p + 1
    int n2 = r - q;                                                                 //2. n2 = r-q

    //Declaration of left and right part of the array
    int* leftArray= new int[n1+1] ;                                                 //3. Let L[1...n1+1] and ... 
    int* rightArray= new int[n2+1] ;                                                //... R[1...n2+1] be new arrays

    //Entering the for loop for the left side
    for (int i = 0; i < n1; i++)                                                    //4.for i = 1 to n1 NB(change i to 0 since index in c++ starts from 0)
    {
        leftArray[i] = A[p + i ];                                                   //5. L[i] = A[p+i-1] NB(change to A[p+i] since "i" was changed to 0 hence A[p,...,p+i)
    }

    //Entering the for loop for the right side
    for (int  j = 0; j < n2; j++)                                                   //6. for j = 1 to n2 NB(change j j= 0 since index in c++ starts from 0)
    {
        rightArray[j] = A[q + j+1];                                                 //7. R[i] = A[q + j ] NB(change to A[q+j+1] since "j" was changed to 0  hence A[q+1,...q+1+j]
    }

    leftArray[n1] = 999;                                                            //8. Set L[n1+1] = sentinel NB last value in leftArray will be the sentinel
    rightArray[n2] = 999;                                                           //9. Set L[n2 + 2] = sentinel NB last value in rightArray will be the sentinel

    int i = 0;                                                                      //10. i = 1 change to i = 0 since index starts from 0 in c++
    int j = 0;                                                                      //11. j = 1 change to j = 0 since index starts from 0 in c++

    for (int k = p; k <= r; k++)                                                    //12. for k = p to r - change as specified in code since index of array p = 0, r = lengthofArray - 1
    {
        if (leftArray[i] <= rightArray[j])                                          //13. L[i] <= R[j]
        {
            A[k] = leftArray[i];                                                    //14. A[k] = L[i]
            i = i + 1;                                                              //15. i = i + 1
        }
        else
        {
            A[k] = rightArray[j];                                                   //16. A[k] = R[j]
            j = j + 1;                                                              //17. j = j+1;
        }
    }

    delete leftArray;                                                               //18. Free allocated dynamic memory for leftArray
    leftArray = nullptr;                                                            //19. Set pointer to nullptr to prevent access to deleted memory
    delete rightArray;                                                              //20. Free allocated dynamic memory for rightArray              
    rightArray = nullptr;                                                           //21. Set pointer to nullptr to prevent access to deleted memory
}

int* mergeSort(int A[], int p, int r)
{
    if (p < r)
    {
        int q = floor((p + r) / 2);
        mergeSort(A, p, q );
        mergeSort(A, q + 1, r);
        merge(A, p, q, r);
    }

    return A;
}

0
投票

这是我的尝试。 已知错误:由于使用 INT_MAX 作为哨兵,对包含 INT_MAX 的数组进行排序可能会导致合并期间指针溢出。

#include <stdio.h>
#include <limits.h>
void merge(int A[], unsigned int p, unsigned int q, unsigned int r){
    unsigned int n1 = q - p; //differs from book because C indexes from 0
    unsigned int n2 = r - q;


    int L[n1 + 1]; // L contains the first elem of A, up to the midpoint (not including the midpoint)
    int R[n2 + 1]; // R contains the elems including the midpoint of A all the way to the end.

    L[n1] = INT_MAX; //INT_MAX is our sentinel, which will be used in the merge step. No possible int will be greater than INT_MAX, so during the merge,
    R[n2] = INT_MAX; // INT_MAX is similar to the infinity used in the book

    for (unsigned int i = 0; i < n1; i++){
        L[i] = A[p + i];
    }

    for (unsigned int i = 0; i < n2; i++){
        R[i] = A[q + i];
    }
    // Now we just need to merge L and R and sort A
    // The sorting occurs here, during the merge.
    unsigned int i = 0;
    unsigned int j = 0;

    for (unsigned int k = p; k < r; k++){
        if (L[i] <= R[j]){
            A[k] = L[i];
            i++;
        }
        else{
            A[k] = R[j];
            j++;
        }
    }
}
void merge_sort(int A[], unsigned int p, unsigned int r) { // input is array A, first elem p, and last elem + 1 r

    if (p < r - 1) { //differs from book... since C indexes from 0, if we have an array of size 1, we will subtract 1 to get 0 and then hit the base case

        // Otherwise, find the midpoint and divide and conquer
        unsigned int q = (p + r) / 2; //q is the midpoint of A
        merge_sort(A, p, q); //this must process the midpoint
        merge_sort(A, q, r); //this must process the elem after the midpoint to the last elem
        merge(A, p, q, r);
        return;


    }

}


int main(){

    int A[] = {432, 5, 99, 101, 43};
    unsigned int len_A = sizeof(A)/sizeof(A[0]);

    printf("original order of elems in A: \n");

    for (unsigned int i = 0; i < len_A; i++){
        printf("%d ", A[i]);
    }

    merge_sort(A, 0, len_A);

    printf("\n\n");
    printf("after performing merge_sort: \n");


    for (unsigned int i = 0; i < len_A; i++){
        printf("%d ", A[i]);
    }

    printf("\n\n");

return 0;
}

0
投票
// merge.cpp
#include <iostream>
#include <vector>
using namespace std;

template <typename T>
void merge( vector<T> &arr, int p, int q, int r ) {

    int nl = q - p + 1;
    int nr = r - q;
    vector<T> larr(nl), rarr(nr);
    for ( int i = 0; i < nl; i++ )
        larr[i] = arr[p + i];
    for ( int j = 0; j < nr; j++ )
        rarr[j] = arr[q + j + 1];

    int i = 0, j = 0, k = p;

    while( i < nl && j < nr ) {
        if ( larr[i] <= rarr[j] ) {
            arr[k] = larr[i];
            i++;
        }
        else {
            arr[k] = rarr[j];
            j++;
        }
        k++;
    }
    while ( i < nl ) {
        arr[k] = larr[i];
        i++;
        k++;
    }
    while ( j < nr ) {
        arr[k] = rarr[j];
        j++;
        k++;
    }
}

template <typename T>
void merge_sort( vector<T> &arr, int p, int r ) {

    if ( p >= r )
        return;
    int q = ( p + r ) / 2;
    merge_sort( arr, p, q );
    merge_sort( arr, q + 1, r );
    merge( arr, p, q, r );
}

template <typename T>
void display( vector<T> &arr ) {

    int p = 0;
    int r = arr.size()-1;
    cout << "Before sorting: ";
    for ( size_t i = 0; i < arr.size(); i++ )
        cout << arr[i] << " ";
    cout << endl;
    merge_sort( arr, p, r );
    cout << "After sorting:  ";
    for ( size_t i = 0; i < arr.size(); i++ )
        cout << arr[i] << " ";
    cout << endl;
}

int main( void ) {

    vector<int>    a{ 12, 3, 7, 9, 14, 6, 11, 2 };
    vector<double> b{ 7.29, 7.25, -12.39, -12.875, 0.375, 0.37, 19.1, 5.76, 1.85 };
    vector<char>   c{ 'q', 'c', 'z', 'r', 'b', 'a', 's', 'j', 'm', 'w', 'f', 'p', 'g', 'f' };
    vector<string> d{ "Arvid", "Thirl", "Loki", "Athena", "Nimrod", "Zima", "Kirin" };
   
    display( a );
    display( b );
    display( c );
    display( d );
   
    return 0;
}
c++ -O3 -Wall -std=c++11 -o merge merge.cpp
./merge
Before sorting: 12 3 7 9 14 6 11 2 
After sorting:  2 3 6 7 9 11 12 14 
Before sorting: 7.29 7.25 -12.39 -12.875 0.375 0.37 19.1 5.76 1.85 
After sorting:  -12.875 -12.39 0.37 0.375 1.85 5.76 7.25 7.29 19.1 
Before sorting: q c z r b a s j m w f p g f 
After sorting:  a b c f f g j m p q r s w z 
Before sorting: Arvid Thirl Loki Athena Nimrod Zima Kirin 
After sorting:  Arvid Athena Kirin Loki Nimrod Thirl Zima 
© www.soinside.com 2019 - 2024. All rights reserved.