我需要帮助将此2D天空着色器转换为3D

问题描述 投票:1回答:1

我在github上找到了此着色器功能,并设法使其在GameMaker Studio 2(我当前选择的编程套件)中正常工作。但是,这是2D效果,没有考虑相机向上矢量,也没有考虑fov。无论如何,可以添加到此吗?在着色器方面,我只是中级技能,因此我不确定到底走什么路线,或者现在是否值得考虑,或者我是否应该从另一个示例开始。

uniform vec3 u_sunPosition;
varying vec2 v_vTexcoord;
varying vec4 v_vColour;
varying vec3 v_vPosition;

#define PI 3.141592
#define iSteps 16
#define jSteps 8

vec2 rsi(vec3 r0, vec3 rd, float sr) {
    // ray-sphere intersection that assumes
    // the sphere is centered at the origin.
    // No intersection when result.x > result.y
    float a = dot(rd, rd);
    float b = 2.0 * dot(rd, r0);
    float c = dot(r0, r0) - (sr * sr);
    float d = (b*b) - 4.0*a*c;
    if (d < 0.0) return vec2(1e5,-1e5);
    return vec2(
        (-b - sqrt(d))/(2.0*a),
        (-b + sqrt(d))/(2.0*a)
    );
}

vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) {
    // Normalize the sun and view directions.
    pSun = normalize(pSun);
    r = normalize(r);

    // Calculate the step size of the primary ray.
    vec2 p = rsi(r0, r, rAtmos);
    if (p.x > p.y) return vec3(0,0,0);
    p.y = min(p.y, rsi(r0, r, rPlanet).x);
    float iStepSize = (p.y - p.x) / float(iSteps);

    // Initialize the primary ray time.
    float iTime = 0.0;

    // Initialize accumulators for Rayleigh and Mie scattering.
    vec3 totalRlh = vec3(0,0,0);
    vec3 totalMie = vec3(0,0,0);

    // Initialize optical depth accumulators for the primary ray.
    float iOdRlh = 0.0;
    float iOdMie = 0.0;

    // Calculate the Rayleigh and Mie phases.
    float mu = dot(r, pSun);
    float mumu = mu * mu;
    float gg = g * g;
    float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);
    float pp = 1.0 + gg - 2.0 * mu * g;
    float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (sign(pp)*pow(abs(pp), 1.5) * (2.0 + gg));

    // Sample the primary ray.
    for (int i = 0; i < iSteps; i++) {

        // Calculate the primary ray sample position.
        vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);

        // Calculate the height of the sample.
        float iHeight = length(iPos) - rPlanet;

        // Calculate the optical depth of the Rayleigh and Mie scattering for this step.
        float odStepRlh = exp(-iHeight / shRlh) * iStepSize;
        float odStepMie = exp(-iHeight / shMie) * iStepSize;

        // Accumulate optical depth.
        iOdRlh += odStepRlh;
        iOdMie += odStepMie;

        // Calculate the step size of the secondary ray.
        float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps);

        // Initialize the secondary ray time.
        float jTime = 0.0;

        // Initialize optical depth accumulators for the secondary ray.
        float jOdRlh = 0.0;
        float jOdMie = 0.0;

        // Sample the secondary ray.
        for (int j = 0; j < jSteps; j++) {

            // Calculate the secondary ray sample position.
            vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5);

            // Calculate the height of the sample.
            float jHeight = length(jPos) - rPlanet;

            // Accumulate the optical depth.
            jOdRlh += exp(-jHeight / shRlh) * jStepSize;
            jOdMie += exp(-jHeight / shMie) * jStepSize;

            // Increment the secondary ray time.
            jTime += jStepSize;
        }

        // Calculate attenuation.
        vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh)));

        // Accumulate scattering.
        totalRlh += odStepRlh * attn;
        totalMie += odStepMie * attn;

        // Increment the primary ray time.
        iTime += iStepSize;

    }

    // Calculate and return the final color.
    return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie);
}

vec3 ACESFilm( vec3 x )
{
    float tA = 2.51;
    float tB = 0.03;
    float tC = 2.43;
    float tD = 0.59;
    float tE = 0.14;
    return clamp((x*(tA*x+tB))/(x*(tC*x+tD)+tE),0.0,1.0);
}

void main() {
    vec3 color = atmosphere(
        normalize( v_vPosition ),           // normalized ray direction
        vec3(0,6372e3,0),               // ray origin
        u_sunPosition,                        // position of the sun
        22.0,                           // intensity of the sun
        6371e3,                         // radius of the planet in meters
        6471e3,                         // radius of the atmosphere in meters
        vec3(5.5e-6, 13.0e-6, 22.4e-6), // Rayleigh scattering coefficient
        21e-6,                          // Mie scattering coefficient
        8e3,                            // Rayleigh scale height
        1.2e3,                          // Mie scale height
        0.758                           // Mie preferred scattering direction
    );

    // Apply exposure.
    color = ACESFilm( color );

    gl_FragColor = vec4(color, 1.0);
}
glsl shader fragment-shader game-maker-studio-2
1个回答
0
投票

然而,这是2D效果,没有考虑相机向上矢量,也没有考虑到fov。

如果要以3D绘制天空,则必须在归一化设备空间的背面绘制。规范化的设备空间是一个立方体,其左侧,底部附近为(-1,-1,-1),右侧,顶部附近为(1、1、1)。背板是四边形,带有:

bottom left:  -1, -1, 1
bottom right:  1, -1, 1
top right:    -1, -1, 1
top left:     -1, -1, 1

渲染此四边形。注意,顶点坐标不必用任何矩阵变换,因为它们是标准化的设备空间坐标。但是您必须转换用于天空的光线(传递到atmosphere的方向)。从照相机位置到天空,此射线必须是世界空间的方向。通过四边形的顶点坐标,您可以在规范化的设备空间中获得光线。您必须将这条射线转换为世界空间。逆投影矩阵(MATRIX_PROJECTION)从规范化的设备空间转换为视图空间,而逆视图矩阵(MATRIX_PROJECTION)从视图空间转换为世界空间。在顶点着色器中使用此矩阵:

MATRIX_VIEW

在片段着色器中,必须将射线绕x轴旋转90°,但这仅是由函数MATRIX_VIEW解释射线的方式引起的]]

attribute vec3 in_Position;
varying   vec3 v_world_ray;

void main()
{
    gl_Position = vec4(inPos, 1.0);

    vec3 proj_ray = vec3(inverse(gm_Matrices[MATRIX_PROJECTION]) * vec4(inPos.xyz, 1.0));
    v_world_ray   = vec3(inverse(gm_Matrices[MATRIX_VIEW]) * vec4(proj_ray.xyz, 0.0));
}

atmosphere

© www.soinside.com 2019 - 2024. All rights reserved.