有没有办法在宏中获取结构体的字段名称?

问题描述 投票:0回答:4

考虑以下示例:

struct S {
    a: String,
    b: String,
}

我有一个宏,其名称如下:

my_macro!(S);

我想像这样访问宏中结构体的字段名称:

macro_rules! my_macro {
    ($t:ty) => {{
        let field_names = get_field_names($t);
        // do something with field_names
    }};
}

我是 Rust 和宏的新手,所以也许我遗漏了一些明显的东西。

rust macros
4个回答
37
投票

宏在解析过程中或多或少会被扩展;它无法访问 AST 或类似的东西 - 它所能访问的只是您传递给它的东西,这对于

my_macro!(S)
来说纯粹是应该有一个名为
S
的类型。

如果您将结构定义为宏的一部分,那么您可以了解这些字段:

macro_rules! my_macro {
    (struct $name:ident {
        $($field_name:ident: $field_type:ty,)*
    }) => {
        struct $name {
            $($field_name: $field_type,)*
        }

        impl $name {
            // This is purely an example—not a good one.
            fn get_field_names() -> Vec<&'static str> {
                vec![$(stringify!($field_name)),*]
            }
        }
    }
}

my_macro! {
    struct S {
        a: String,
        b: String,
    }
}

// S::get_field_names() == vec!["a", "b"]

…但这虽然可能有用,但通常会是一件可疑的事情。


5
投票

这是另一种不需要编写宏的可能性(但是,字段名称将在运行时解析):

extern crate rustc_serialize;

use rustc_serialize::json::{Encoder, Json};
use rustc_serialize::json::Json::Object;
use rustc_serialize::Encodable;

#[derive(Default, RustcEncodable)]
struct S {
    a: String,
    b: String,
}

fn main() {
    let mut json = "".to_owned();
    {
        let mut encoder = Encoder::new(&mut json);
        S::default().encode(&mut encoder).unwrap();
    }

    let json = Json::from_str(&json).unwrap();
    if let Object(object) = json {
        let field_names: Vec<_> = object.keys().collect();
        println!("{:?}", field_names);
    }
}

(此解决方案需要

rustc-serialize
板条箱)

添加了

derive(Default)
以避免必须根据需要手动创建结构(但仍会创建结构)。

此解决方案的工作原理是将结构体编码为 JSON 格式的

String
,然后将其解码为
Json
。从
Json
对象中,我们可以提取字段名称(如果它是
Object
变体)。

一个可能更有效的方法是编写自己的编码器:

struct FieldNames {
    names: Vec<String>,
}

impl FieldNames {
    fn new() -> FieldNames {
        FieldNames {
            names: vec![],
        }
    }
}

struct FieldsEncoder<'a> {
    fields: &'a mut FieldNames,
}

impl<'a> FieldsEncoder<'a> {
    fn new(fields: &mut FieldNames) -> FieldsEncoder {
        FieldsEncoder {
            fields: fields,
        }
    }
}

type EncoderError = ();

impl<'a> Encoder for FieldsEncoder<'a> {
    fn emit_struct<F>(&mut self, _name: &str, _len: usize, f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> {
        f(self)
    }

    fn emit_struct_field<F>(&mut self, f_name: &str, _f_idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> {
        self.fields.names.push(f_name.to_owned());
        Ok(())
    }

    type Error = EncoderError;
    fn emit_nil(&mut self) -> Result<(), Self::Error> { Err(()) }
    fn emit_usize(&mut self, _v: usize) -> Result<(), Self::Error> { Err(()) }
    fn emit_u64(&mut self, _v: u64) -> Result<(), Self::Error> { Err(()) }
    fn emit_u32(&mut self, _v: u32) -> Result<(), Self::Error> { Err(()) }
    fn emit_u16(&mut self, _v: u16) -> Result<(), Self::Error> { Err(()) }
    fn emit_u8(&mut self, _v: u8) -> Result<(), Self::Error> { Err(()) }
    fn emit_isize(&mut self, _v: isize) -> Result<(), Self::Error> { Err(()) }
    fn emit_i64(&mut self, _v: i64) -> Result<(), Self::Error> { Err(()) }
    fn emit_i32(&mut self, _v: i32) -> Result<(), Self::Error> { Err(()) }
    fn emit_i16(&mut self, _v: i16) -> Result<(), Self::Error> { Err(()) }
    fn emit_i8(&mut self, _v: i8) -> Result<(), Self::Error> { Err(()) }
    fn emit_bool(&mut self, _v: bool) -> Result<(), Self::Error> { Err(()) }
    fn emit_f64(&mut self, _v: f64) -> Result<(), Self::Error> { Err(()) }
    fn emit_f32(&mut self, _v: f32) -> Result<(), Self::Error> { Err(()) }
    fn emit_char(&mut self, _v: char) -> Result<(), Self::Error> { Err(()) }
    fn emit_str(&mut self, _v: &str) -> Result<(), Self::Error> { Err(()) }
    fn emit_enum<F>(&mut self, _name: &str, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_enum_variant<F>(&mut self, _v_name: &str, _v_id: usize, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_enum_variant_arg<F>(&mut self, _a_idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_enum_struct_variant<F>(&mut self, _v_name: &str, _v_id: usize, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_enum_struct_variant_field<F>(&mut self, _f_name: &str, _f_idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_tuple<F>(&mut self, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_tuple_arg<F>(&mut self, _idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_tuple_struct<F>(&mut self, _name: &str, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_tuple_struct_arg<F>(&mut self, _f_idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_option<F>(&mut self, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_option_none(&mut self) -> Result<(), Self::Error> { Err(()) }
    fn emit_option_some<F>(&mut self, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_seq<F>(&mut self, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_seq_elt<F>(&mut self, _idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_map<F>(&mut self, _len: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_map_elt_key<F>(&mut self, _idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
    fn emit_map_elt_val<F>(&mut self, _idx: usize, _f: F) -> Result<(), Self::Error> where F: FnOnce(&mut Self) -> Result<(), Self::Error> { Err(()) }
}

可以这样使用:

fn main() {
    let mut fields = FieldNames::new();
    {
        let mut encoder = FieldsEncoder::new(&mut fields);
        S::default().encode(&mut encoder).unwrap();
    }

    println!("{:?}", fields.names);
}

4
投票

我想做同样的事情:访问结构体的字段名称。但更复杂的是,该结构已经使用了

#[derive()]
样式宏,这与
macro_rules!
解决方案
不兼容。由于我预计我的用例相当常见,因此这里是我的解决方案的快速记录。

我的最终目标是用

CSV
 箱编写与 struct Record
 相对应的 
csv
标题行,即使没有写入记录(写入记录通常是通过
serialize()
完成的,但有时我们会过滤所有记录,但仍然需要一个有效的空
CSV
文件作为输出)。这个确切的问题也在另一个SO问题中得到了阐述,并且仅使用
csv
板条箱是不可能的,这是一个已知且当前未解决的问题

针对结构体上的

#[derive()]
宏带来的额外复杂性,我的解决方案是使用 #[derive(FieldNamesAsArray)]
 crate
定义的
struct-field-names-as-array
宏。

您需要在

Cargo.toml
中定义依赖关系:

[dependencies]
struct-field-names-as-array = "0.1"

然后您可以简单地使用相应的派生宏注释

struct Record
模块中的
something.rs
并使用生成的常量
Record::FIELD_NAMES_AS_ARRAY
进行标头写入:

// csv-specific imports
use csv::WriterBuilder;
use serde::Serialize;

// import for getting the field names array
use struct_field_names_as_array::FieldNamesAsArray;

// Serialize from serde, to write `Record`s systematically
// FieldNamesAsArray to get the field names
#[derive(Serialize,FieldNamesAsArray)]
struct Record {
    field_1: String,
    field_2: u64,
}

// ensure that serializing records does not write a header with
// the `.has_headers(false)`
let mut csv_writer = csv::WriterBuilder::new()
    .has_headers(false)
    .from_path("foo.csv")?;

// Manually write out the header.
csv_writer.write_record(Record::FIELD_NAMES_AS_ARRAY)?;

// `serialize()` records later, if some condition is met.
// But we also have a correct header if this condition is never met.
if some_condition {
    csv_writer.serialize(Recor {
        field_1: "some_string",
        field_2: 71028743,
    })?;
}

0
投票

此过程宏将返回带注释的结构体的字段

use proc_macro::TokenStream;
use quote::quote;
use syn;

#[proc_macro_derive(GetAttributesMacro)]
pub fn get_attributes_derive(input: TokenStream) -> TokenStream {
    // Construct a representation of Rust code as a syntax tree
    // that we can manipulate
    let ast = syn::parse(input).unwrap();

    // Build the trait implementation
    impl_get_attributes(&ast)
}

fn impl_get_attributes(ast: &syn::DeriveInput) -> TokenStream {
    let name = &ast.ident;
    let fields = match ast.data {
        syn::Data::Struct(ref data) => match data.fields {
            syn::Fields::Named(ref fields) => fields.named.iter().map(|f| f.ident.clone().unwrap()),
            _ => unimplemented!(),
        },
        _ => unimplemented!(),
    };

    let gen = quote! {

    impl GetAttributesMacro for #name {
            fn get_attributes(&self) -> Vec<&str> {
             let mut vec = Vec::new();

                #(
                    vec.push(stringify!(#fields));
                )*
            return vec;
            }
        }
    };

    gen.into()
}

示例:

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize, GetAttributesMacro)]
#[serde(rename_all = "camelCase")]
pub struct Asset {
    pub id: String,
}
fn main() {
    let d = deployment::Asset {
        id: String::from("test"),
    };

    for i in v {
            println!("{}", i)
    }
}
   Finished dev [unoptimized + debuginfo] target(s) in 0.17s
     Running `target/debug/proc`
id
© www.soinside.com 2019 - 2024. All rights reserved.