执行小矩阵求逆 - CUBLAS或MAGMA

问题描述 投票:-1回答:1

我正在寻找一个使用python的解决方案来执行矩阵求逆。我认为应该有一种方法可以让CUBLAS或MAGMA以批处理或并发方式执行这些操作,因为每个矩阵都独立于所有ohers。

所以我正在寻找针对这个特定问题的反馈,看看CUBLAS或MAGMA是否有解决方案来执行这个批处理或并行执行。

我认为这里提出的计算应该是GPU的理想选择。

我必须找到一个范围为(integ_prec,integ_prec)的2D范围内核,其中内核执行给定全局项的4x4矩阵求逆。

有人可以帮我实现这个内核代码吗?我测试过NVIDIA开发人员提供的batch_solver,但我无法让它工作。

更新1:回答@Robert Crovella,我尝试使用NVIDIA开发人员的BatchSolver(版本BatchedSolver_v1_1)。

您可以在下面看到我在编译期间收到的警告:

$ make
nvcc -O3  -arch=sm_35 -DKEPLER2  -o example_batch_solver example.c solve.cu inverse.cu
In file included from solve.cu:41:
./operations.h:31:2: warning: 'OPERATIONS_H_' is used as a header guard here, followed by #define of a different macro [-Wheader-guard]
#if !defined(OPERATIONS_H_)
 ^~
./operations.h:32:9: note: 'OPERATIONS_SOLVE_H_' is defined here; did you mean 'OPERATIONS_H_'?
#define OPERATIONS_SOLVE_H_
        ^~~~~~~~~~~~~~~~~~~
        OPERATIONS_H_
1 warning generated.
In file included from solve.cu:41:
./operations.h:31:2: warning: 'OPERATIONS_H_' is used as a header guard here, followed by #define of a different macro [-Wheader-guard]
#if !defined(OPERATIONS_H_)
 ^~
./operations.h:32:9: note: 'OPERATIONS_SOLVE_H_' is defined here; did you mean 'OPERATIONS_H_'?
#define OPERATIONS_SOLVE_H_
        ^~~~~~~~~~~~~~~~~~~
        OPERATIONS_H_
1 warning generated.
In file included from inverse.cu:44:
./operations.h:31:2: warning: 'OPERATIONS_H_' is used as a header guard here, followed by #define of a different macro [-Wheader-guard]
#if !defined(OPERATIONS_H_)
 ^~
./operations.h:32:9: note: 'OPERATIONS_SOLVE_H_' is defined here; did you mean 'OPERATIONS_H_'?
#define OPERATIONS_SOLVE_H_
        ^~~~~~~~~~~~~~~~~~~
        OPERATIONS_H_
1 warning generated.

In file included from inverse.cu:44:
./operations.h:31:2: warning: 'OPERATIONS_H_' is used as a header guard here, followed by #define of a different macro [-Wheader-guard]
#if !defined(OPERATIONS_H_)
 ^~
./operations.h:32:9: note: 'OPERATIONS_SOLVE_H_' is defined here; did you mean 'OPERATIONS_H_'?
#define OPERATIONS_SOLVE_H_
        ^~~~~~~~~~~~~~~~~~~
        OPERATIONS_H_
1 warning generated.

不幸的是,执行给出了不好的结果:

Non-batched matrix inversion

        3.000000   1.000000   1.000000             nan  -19945373249087470322107824313046586886748897396355850773313316907920980812816123986073723926411981165664742747916855157931798956499818437291518879567207778108249202114071816066955302634366146096749274721347289725502062211559628338200162202651585616465674552041292175081655027073691104118308864.000000  -25949369271932562088528097628985580835309378491979298170251656488819244813241392783541154149164125403081303093429316785499097407170772831834462454013755392.000000
etc ...

因此,为了避免这些警告,我用OPERATIONS_SOLVE_Hinto OPERATIONS_H_文件替换了宏operations.h。编译期间不再有警告,但执行结果仍然不好(与上面相同)。

任何人都有关于这个Batchsolver的相同问题(在MacOS 10.13.5NVIDIA driver 387.10.10.10.35.106和CUDA-10.0)?

matrix cuda matrix-inverse pycuda
1个回答
1
投票

正如评论中所提到的,通常不能从pycuda内核代码(或CUDA内核代码或numba cuda内核)使用numpy函数。

CUBLAS提供batched matrix inversion function,但它目前没有暴露在pyculib cublas interfacescikit-cuda cublas interface

我们可以继续实现我们自己的接口(例如使用python ctypes),但由于它已经知道要反转的矩阵是4x4,我认为来自talonmies的评论中的建议是一个有趣的。参考here的答案,有一个相当简洁的C代码来直接反演4x4矩阵。

首先是在CUDA中实现这一点。函数inv4x4是对前一代码的改编,为每个矩阵分配16个线程(每个矩阵元素一个)并使用该代码作为模型。每个线程负责计算一个结果矩阵元素。首先,我们将它与CUBLAS matinvBatched的性能进行比较:

$ cat t411.cu
#include <iostream>
#include <cublas_v2.h>
#include <cstdlib>
// 4x4 matrix inversion
// https://stackoverflow.com/questions/1148309/inverting-a-4x4-matrix

// assumes warp size is 32
// assumes block size is multiple of warp size
// therefore assumes number of matrices to be inverted (n) is even
// 16 threads per matrix to invert

const unsigned block_size = 256;
typedef float mt;

#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL

long long dtime_usec(unsigned long long start){

  timeval tv;
  gettimeofday(&tv, 0);
  return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}

__device__ unsigned pat[3][16];
const unsigned hpat[3][16] = {
{ 0x0EB51FA5, 0x1EB10FA1, 0x0E711F61, 0x1A710B61, 0x1EB40FA4, 0x0EB01FA0, 0x1E700F60, 0x0A701B60, 0x0DB41F94, 0x1DB00F90, 0x0D701F50, 0x19700B50, 0x1DA40E94, 0x0DA01E90, 0x1D600E50, 0x09601A50},
{ 0x1E790F69, 0x0E391F29, 0x1E350F25, 0x0A351B25, 0x0E781F68, 0x1E380F28, 0x0E341F24, 0x1A340B24, 0x1D780F58, 0x0D381F18, 0x1D340F14, 0x09341B14, 0x0D681E58, 0x1D280E18, 0x0D241E14, 0x19240A14},
{ 0x0A7D1B6D, 0x1A3D0B2D, 0x063D172D, 0x16390729, 0x1A7C0B6C, 0x0A3C1B2C, 0x163C072C, 0x06381728, 0x097C1B5C, 0x193C0B1C, 0x053C171C, 0x15380718, 0x196C0A5C, 0x092C1A1C, 0x152C061C, 0x05281618}};

__device__ unsigned getoff(unsigned &off){
  unsigned ret = off & 0x0F;
  off = off >> 4;
  return ret;
}

const unsigned tmsk = 0xFFFFFFFF;
// in-place is acceptable i.e. out == in)
// T = float or double only
template <typename T>
__global__ void inv4x4(const T * __restrict__ in, T * __restrict__ out, const size_t n){

  __shared__ T si[block_size];
  size_t idx = threadIdx.x+blockDim.x*blockIdx.x;
  if (idx < n*16){
    si[threadIdx.x] = in[idx];
    unsigned lane = threadIdx.x & 15;
    unsigned sibase = threadIdx.x & 0x03F0;
    __syncwarp();
    unsigned off = pat[0][lane];
    T a,b;
    a  = si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    if (!getoff(off)) a = -a;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[1][lane];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[2][lane];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    T det = si[sibase + (lane>>2)]*a;
    det += __shfl_down_sync(tmsk, det, 4, 16); // first add
    det += __shfl_down_sync(tmsk, det, 8, 16); // second add
    det =  __shfl_sync(tmsk, det, 0, 16); // broadcast
    out[idx] = a / det;
  }
}

size_t nr = 2048;
int main(int argc, char *argv[]){
  if (argc > 1) nr = atoi(argv[1]);

  const mt m1[] = {1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 3.0, 1.0, 0.0, 1.0, 0.0, 2.0, 1.0};
  const mt i1[] = {-3.0, -0.5, 1.5, 1.0, 1.0, 0.25, -0.25, -0.5, 3.0, 0.25, -1.25, -0.5, -3.0, 0.0, 1.0, 1.0};
  const mt m2[] = {1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0};
  const mt i2[] = {1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0};

  mt *h_d, *d_d;
  h_d = (mt *)malloc(nr*2*16*sizeof(mt));
  cudaMalloc(&d_d, nr*2*16*sizeof(mt));
  cudaMemcpyToSymbol(pat, hpat, 3*16*sizeof(unsigned));
  for (int i = 0; i < nr; i++){
    memcpy(h_d+i*16*2, m1, sizeof(m1));
    memcpy(h_d+i*16*2+16, m2, sizeof(m2));}
  cudaMemcpy(d_d, h_d, nr*2*16*sizeof(mt), cudaMemcpyHostToDevice);
  long long t = dtime_usec(0);
  inv4x4<<<nr*2*16/block_size, block_size>>>(d_d, d_d, nr*2);
  cudaDeviceSynchronize();
  t = dtime_usec(t);
  cudaMemcpy(h_d, d_d, nr*2*16*sizeof(mt), cudaMemcpyDeviceToHost);
  for (int i = 0; i < 2; i++){
    for (int j = 0; j < 16; j++) std::cout << h_d[i*16 + j] << ",";
    std::cout << std::endl;
    for (int j = 0; j < 16; j++) std::cout << ((i==0)?i1[j]:i2[j]) << ",";
    std::cout << std::endl;}
  std::cout << "kernel time: " << t << " microseconds" << std::endl;
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) std::cout << cudaGetErrorString(err) << std::endl;
  //cublas
  for (int i = 0; i < nr; i++){
    memcpy(h_d+i*16*2, m1, sizeof(m1));
    memcpy(h_d+i*16*2+16, m2, sizeof(m2));}
  cudaMemcpy(d_d, h_d, nr*2*16*sizeof(mt), cudaMemcpyHostToDevice);
  cublasHandle_t h;
  cublasStatus_t cs = cublasCreate(&h);
  if (cs != CUBLAS_STATUS_SUCCESS) std::cout << "cublas create error" << std::endl;
  mt **A, **Ai, *Aid, **Ap, **Aip;
  A  = (mt **)malloc(nr*2*sizeof(mt *));
  Ai = (mt **)malloc(nr*2*sizeof(mt *));
  cudaMalloc(&Aid, nr*2*16*sizeof(mt));
  cudaMalloc(&Ap,  nr*2*sizeof(mt *));
  cudaMalloc(&Aip, nr*2*sizeof(mt *));
  for (int i = 0; i < nr*2; i++) A[i]  =  d_d + 16*i;
  for (int i = 0; i < nr*2; i++) Ai[i] =  Aid + 16*i;
  cudaMemcpy(Ap, A, nr*2*sizeof(mt *), cudaMemcpyHostToDevice);
  cudaMemcpy(Aip, Ai, nr*2*sizeof(mt *), cudaMemcpyHostToDevice);
  int *info;
  cudaMalloc(&info, nr*2*sizeof(int));
  t = dtime_usec(0);
  cs = cublasSmatinvBatched(h, 4,  Ap, 4, Aip, 4, info, nr*2);
  if (cs != CUBLAS_STATUS_SUCCESS) std::cout << "cublas matinv error" << std::endl;
  cudaDeviceSynchronize();
  t = dtime_usec(t);
  cudaMemcpy(h_d, Aid, nr*2*16*sizeof(mt), cudaMemcpyDeviceToHost);
  for (int i = 0; i < 2; i++){
    for (int j = 0; j < 16; j++) std::cout << h_d[i*16 + j] << ",";
    std::cout << std::endl;
    for (int j = 0; j < 16; j++) std::cout << ((i==0)?i1[j]:i2[j]) << ",";
    std::cout << std::endl;}
  std::cout << "cublas time: " << t << " microseconds" << std::endl;
  err = cudaGetLastError();
  if (err != cudaSuccess) std::cout << cudaGetErrorString(err) << std::endl;
  return 0;
}
$ nvcc -o t411 t411.cu -lcublas
$ ./t411
-3,-0.5,1.5,1,1,0.25,-0.25,-0.5,3,0.25,-1.25,-0.5,-3,-0,1,1,
-3,-0.5,1.5,1,1,0.25,-0.25,-0.5,3,0.25,-1.25,-0.5,-3,0,1,1,
1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,
1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,
kernel time: 49 microseconds
-3,-0.5,1.5,1,1,0.25,-0.25,-0.5,3,0.25,-1.25,-0.5,-3,0,1,1,
-3,-0.5,1.5,1,1,0.25,-0.25,-0.5,3,0.25,-1.25,-0.5,-3,0,1,1,
1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,
1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,
cublas time: 95 microseconds
$

我们看到代码似乎为2个测试矩阵反转提供了正确的结果,并且在特斯拉P100上反转4096个矩阵的总时间约为50us,比CUBLAS快约2倍。请注意,我没有详尽地测试此代码。

接下来是类似函数的简单pycuda实现。在这里,为简单起见,我们只是反转2个矩阵:

$ cat t10.py
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit
# kernel
kernel = SourceModule("""

__device__ unsigned getoff(unsigned &off){
  unsigned ret = off & 0x0F;
  off = off >> 4;
  return ret;
}

const int block_size = 256;
const unsigned tmsk = 0xFFFFFFFF;
// in-place is acceptable i.e. out == in)
// T = float or double only
typedef float T;
__global__ void inv4x4(const T * __restrict__ in, T * __restrict__ out, const size_t n, const unsigned * __restrict__ pat){

  __shared__ T si[block_size];
  size_t idx = threadIdx.x+blockDim.x*blockIdx.x;
  if (idx < n*16){
    si[threadIdx.x] = in[idx];
    unsigned lane = threadIdx.x & 15;
    unsigned sibase = threadIdx.x & 0x03F0;
    __syncwarp();
    unsigned off = pat[lane];
    T a,b;
    a  = si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    if (!getoff(off)) a = -a;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[lane+16];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[lane+32];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    T det = si[sibase + (lane>>2)]*a;
    det += __shfl_down_sync(tmsk, det, 4, 16); // first add
    det += __shfl_down_sync(tmsk, det, 8, 16); // second add
    det =  __shfl_sync(tmsk, det, 0, 16); // broadcast
    out[idx] = a / det;
  }
}

""")
# python function for inverting 4x4 matrices
# n should be an even number
def gpuinv4x4(inp, n):
    # internal constants not to be modified
    hpat = ( 0x0EB51FA5, 0x1EB10FA1, 0x0E711F61, 0x1A710B61, 0x1EB40FA4, 0x0EB01FA0, 0x1E700F60, 0x0A701B60, 0x0DB41F94, 0x1DB00F90, 0x0D701F50, 0x19700B50, 0x1DA40E94, 0x0DA01E90, 0x1D600E50, 0x09601A50, 0x1E790F69, 0x0E391F29, 0x1E350F25, 0x0A351B25, 0x0E781F68, 0x1E380F28, 0x0E341F24, 0x1A340B24, 0x1D780F58, 0x0D381F18, 0x1D340F14, 0x09341B14, 0x0D681E58, 0x1D280E18, 0x0D241E14, 0x19240A14, 0x0A7D1B6D, 0x1A3D0B2D, 0x063D172D, 0x16390729, 0x1A7C0B6C, 0x0A3C1B2C, 0x163C072C, 0x06381728, 0x097C1B5C, 0x193C0B1C, 0x053C171C, 0x15380718, 0x196C0A5C, 0x092C1A1C, 0x152C061C, 0x05281618)
    # Convert parameters into numpy array
    inpd = np.array(inp, dtype=np.float32)
    hpatd = np.array(hpat, dtype=np.uint32)
    output = np.empty((n*16), dtype= np.float32)
    # Get kernel function
    matinv4x4 = kernel.get_function("inv4x4")
    # Define block, grid and compute
    blockDim = (256,1,1) # do not change
    gridDim = ((n/16)+1,1,1)
    # Kernel function
    matinv4x4 (
        cuda.In(inpd), cuda.Out(output), np.uint64(n), cuda.In(hpatd),
        block=blockDim, grid=gridDim)
    return output
#example/test case
inp = (1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 3.0, 1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)
n = 2
result = gpuinv4x4(inp, n)
print(result)
$ python t10.py
[-3.   -0.5   1.5   1.    1.    0.25 -0.25 -0.5   3.    0.25 -1.25 -0.5  -3.
 -0.    1.    1.    1.    0.    0.    0.    0.    1.    0.    0.    0.    0.
  1.    0.    0.    0.    0.    1.  ]
$

我花了很少的时间创建这个pycuda测试用例,所以请将其视为一个粗略的演示工具。

我怀疑如果你在CUDA中唯一需要做的就是反转这些矩阵,这将不是一个有趣或有吸引力的用例。我希望将数据传输到设备并返回结果的成本将超过使用GPU的任何加速优势,而不是普通的numpy。但是,我还没有对一个numpy案例进行测试或基准测试。

请注意,使用__syncwarp()意味着此内核代码需要CUDA 9.0或更高版本。

还要注意,代码需要反转偶数个矩阵。如果没有偶数,请使用任何值将数组填充到下一个偶数个矩阵。

还要注意,代码只是假设矩阵是可逆的。没有测试以确定它们是否不是,例如,如果计算的行列式为零,则矩阵将不可逆(使用该方法)并且由于被除零,结果通常将是NaN。

目前还不清楚目的是什么,所以这个例子不应该被解释为一般矩阵求逆是一个好主意或适合特定问题的解决方法。

© www.soinside.com 2019 - 2024. All rights reserved.