SNN 模型在每次迭代后都会变慢,然后耗尽内存

问题描述 投票:0回答:1

我正在实现全卷积网络(UNet)的尖峰版本。我测试了没有 LIF 神经元的正常模型,虽然它非常占用内存,但效果很好,所以我必须使用批量大小 < 4. After converting the model to use LIF neurons, it runs for 5 iterations and then runs out of memory. Every subsequent iteration is slower than the last as well. My inputs are 4 channel 512x512 so they take a lot of memory to handle even without the added temporal dimension, but I still get the CUDA out of memory error even with a batch size of 1 and num_steps = 1 (essentially no temporal dimension at all). So the problem isn't that I don't have the juice to run the model, it's that something is clogging up the memory and not being removed when it needs to (at least I think). I've been fiddling around with it for a while but I can't seem to find the problem. Below I've attached my code plus the outputs of a profiler running the loop with num_steps = 2, batch size = 1 and for 5 iterations.

链接到我的探查器输出和跟踪: https://drive.google.com/drive/folders/1Lg_92gmSAzVlVb3AnsbxJokGVxfDRGd_?usp=drive_link

# UNet parts
class DoubleConv(nn.Module):
    """(convolution => [BNTT] => Spikes) * 2 + Dropout"""

    def __init__(self, in_channels, out_channels, beta, SG_func, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels

        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
            #snn.bntt.BatchNormTT2d(mid_channels, time_steps=num_steps),
            snn.Leaky(beta=beta, spike_grad=SG_func, init_hidden=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
            #snn.bntt.BatchNormTT2d(out_channels, time_steps=num_steps),
            snn.Leaky(beta=beta, spike_grad=SG_func, init_hidden=True),
            nn.Dropout2d()
        )
        
    def forward(self, x):  
        UT.reset(self)
        out_spks= self.double_conv(x)
        return out_spks
            
      
class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels, beta, SG_func):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels, beta=beta, SG_func=SG_func)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, beta, SG_func, bilinear=True):
        super().__init__()

        # transposed conv option omiited, only bilinear used instead
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv = DoubleConv(in_channels, out_channels, beta=beta, SG_func=SG_func, mid_channels=in_channels // 2)
        
    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is BxCxHxW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    """Output conv with 1x1 kernel"""
    
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)

# full Unet model
class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True, beta=0.5, SG_func=surrogate.ATan.apply):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear
        self.beta = beta
        self.SG_func = SG_func
        
        self.inc = DoubleConv(n_channels, 64, beta, SG_func)
        self.down1 = Down(64, 128, beta, SG_func)
        self.down2 = Down(128, 256, beta, SG_func)
        self.down3 = Down(256, 512, beta, SG_func)
        self.down4 = Down(512, 1024 // 2, beta, SG_func)
        self.up1 = Up(1024, 512 // 2, beta, SG_func)
        self.up2 = Up(512, 256 // 2, beta, SG_func)
        self.up3 = Up(256, 128 // 2,beta, SG_func)
        self.up4 = Up(128, 64, beta, SG_func)
        self.outc = OutConv(64, n_classes)

    def forward(self, x):
        spikes = []
        torch.cuda.empty_cache()
        UT.reset(self)
        for step in range(num_steps):
            x1 = self.inc(x[step])
            x2 = self.down1(x1)
            x3 = self.down2(x2)
            x4 = self.down3(x3)
            x5 = self.down4(x4)
            x6 = self.up1(x5, x4)
            x7 = self.up2(x6, x3)
            x8 = self.up3(x7, x2)
            x9 = self.up4(x8, x1)
            spikes.append(x9)
        x1 = x1.detach()
        x2 = x2.detach()
        x3 = x3.detach()
        x4 = x4.detach()
        x5 = x5.detach()
        x6 = x6.detach()
        x7 = x7.detach()
        x8 = x8.detach()
        x9 = x9.detach()
        accumulated_spks=torch.sum(torch.stack(spikes), dim=0)
        accumulated_spks=accumulated_spks.detach()
        output = self.outc(accumulated_spks)
        return output

# very simple training loop just to mess around with

def training(loss_f, model, Optimizer, dataloader): 
    
    training_acc = 0
    batch_no = 0
    model.train() # set network to training mode
    for batch in dataloader:
        torch.cuda.empty_cache()
        print(f"iteration: {batch_no}")
        start = time.time()
        X = spikegen.rate(batch["X"], num_steps=num_steps).to(device) # ensure network and data are running on GPU if available
        Y = batch["Y"].to(device)
        pred = model(X) # compute network output
        loss = loss_f(pred, Y) # compute loss and backpropagate on it
        Optimizer.zero_grad()
        loss.backward()
        Optimizer.step()
        stop = time.time()
        batch_no += 1
        if batch_no == 5:
            break;
        if batch_no % 50 == 0:
            print(f"Loss at batch no: {batch_no}: {loss}")


PATH = os.path.join(root_dir, "model"+".pth")
model = UNet(n_channels = 4, n_classes = 1).to(device)
torch.save(model.state_dict(), PATH)
loss_f = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
training(loss_f, model, optimizer, train_dataloader)

我尝试添加 torch.cuda.empty_cache() 并使用 snnTorch utils.reset(model) 清除任何不必要的变量或状态堵塞内存,但无济于事。我是 PyTorch 的新手,所以我不太清楚跟踪的情况,但我认为它看起来可能还不错。 idk 我真的很感谢大家的帮助,提前谢谢你们。

pytorch cuda semantic-segmentation
1个回答
0
投票

我发现问题了。 snnTorch 的 util.reset() 没有为 double_conv 正确实现,我传递了 self,但我应该传递 self.double_conv。因此,尖峰神经元的隐藏状态使记忆膨胀并且无法清除。

© www.soinside.com 2019 - 2024. All rights reserved.