我LSTM获悉,损耗降低,但数值渐变不匹配分析渐变

问题描述 投票:6回答:2

以下是自包含的,当你运行它,它将会:

1.打印的损失,以验证它的减少(学习sin波)

2.检查数值梯度反对我的手衍生梯度功能。

两个梯度往往1e-1 to 1e-2内匹配(这仍然是坏的,但显示它的尝试),并有偶尔的极端值。

我花了一周六打了退堂鼓正常FFNN的,能获得工作(耶,渐变的比赛!),现在星期天这个LSTM,和好了,我找不到我的逻辑错误。哦,它在很大程度上取决于我的随机种子,有时是巨大的,有时是可怕的。

我有手检查了我对实施的LSTM方程推导手衍生物(我做了微积分),并针对这3个博客/要点的实现:

并试图(惊人的)调试方法这里建议:https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working-4020854bd607

你能帮看到我已经实现了什么问题?

import numpy as np
np.set_printoptions(precision=3, suppress=True)

def check_grad(params, In, Target, f, df_analytical, delta=1e-5, tolerance=1e-7, num_checks=10):
    """
    delta : how far on either side of the param value to go

    tolerance : how far the analytical and numerical values can diverge
    """

    h_n = params['Wf'].shape[1] # TODO: h & c should be passed in (?)
    h = np.zeros(h_n)
    c = np.zeros(h_n)

    y, outputs, loss, h, c, caches = f(params, h, c, inputs, targets)
    dparams = df_analytical(params, inputs, targets, outputs, caches)

    passes = True
    for _ in range(num_checks):
        print()
        for pname, p, dpname, dp in zip(params.keys(), params.values(), dparams.keys(), dparams.values()):

            pix = np.random.randint(0, p.size)
            old_val = p.flat[pix]

            # d = delta * abs(old_val) if old_val != 0 else 1e-5
            d = delta

            p.flat[pix] = old_val + d
            _, _, loss_plus, _, _, _ = f(params, h, c, In, Target) # note `_` is the cache
            p.flat[pix] = old_val - d
            _, _, loss_minus, _, _, _ = f(params, h, c, In, Target)
            p.flat[pix] = old_val

            grad_analytic = dp.flat[pix]
            grad_numeric = (loss_plus - loss_minus) / (2 * d)

            denom = abs(grad_numeric + grad_analytic) + 1e-12 # max((abs(grad_numeric), abs(grad_analytic)))
            relative_error = abs(grad_analytic - grad_numeric) / denom

            if relative_error > tolerance:
                print(("fails: %s % 4d |  r: % 3.4f,   a: % 3.4f,   n: % 3.4f,   a/n: %0.2f") % (pname, pix, relative_error, grad_analytic, grad_numeric, grad_analytic/grad_numeric))
            passes &= relative_error <= tolerance

    return passes


# ----------

def lstm(params, inp, h_old, c_old):

    Wf, Wi, Wg, Wo, Wy = params['Wf'], params['Wi'], params['Wg'], params['Wo'], params['Wy']
    bf, bi, bg, bo, by = params['bf'], params['bi'], params['bg'], params['bo'], params['by']

    xh = np.concatenate([inp, h_old])

    f = np.dot(xh, Wf) + bf
    f_sigm = 1 / (1 + np.exp(-f))

    i = np.dot(xh, Wi) + bi
    i_sigm = 1 / (1 + np.exp(-i))

    g = np.dot(xh, Wg) + bg # C-tilde or C-bar in the literature
    g_tanh = np.tanh(g)

    o = np.dot(xh, Wo) + bo
    o_sigm = 1 / (1 + np.exp(-o))

    c = f_sigm * c_old + i_sigm * g_tanh

    c_tanh = np.tanh(c)
    h = o_sigm * c_tanh

    y = np.dot(h, Wy) + by # NOTE: this is a dense layer bolted on after a normal LSTM
    # TODO: should it have a nonlinearity after it? MSE would not work well with, for ex, a sigmoid

    cache = (xh, f, f_sigm, i, i_sigm, g, g_tanh, o, o_sigm, c, c_tanh, c_old, h)
    return y, h, c, cache


def dlstm(params, dy, dh_next, dc_next, cache):

    Wf, Wi, Wg, Wo, Wy = params['Wf'], params['Wi'], params['Wg'], params['Wo'], params['Wy']
    bf, bi, bg, bo, by = params['bf'], params['bi'], params['bg'], params['bo'], params['by']

    xh, f, f_sigm, i, i_sigm, g, g_tanh, o, o_sigm, c, c_tanh, c_old, h = cache

    dby = dy.copy()
    dWy = np.outer(h, dy)
    dh = np.dot(dy, Wy.T) + dh_next.copy()
    do = c_tanh * dh * o_sigm * (1 - o_sigm)
    dc = dc_next.copy() + o_sigm * dh * (1 - c_tanh ** 2) # TODO: copy?
    dg = i_sigm * dc * (1 - g_tanh ** 2)
    di = g_tanh * dc * i_sigm * (1 - i_sigm)
    df = c_old  * dc * f_sigm * (1 - f_sigm) # ERROR FIXED: ??? c_old -> c?, c->c_old?

    dWo = np.outer(xh, do); dbo = do; dXo = np.dot(do, Wo.T)
    dWg = np.outer(xh, dg); dbg = dg; dXg = np.dot(dg, Wg.T)
    dWi = np.outer(xh, di); dbi = di; dXi = np.dot(di, Wi.T)
    dWf = np.outer(xh, df); dbf = df; dXf = np.dot(df, Wf.T)

    dX = dXo + dXg + dXi + dXf
    dh_next = dX[-h.size:]
    dc_next = f_sigm * dc

    dparams = dict(Wf = dWf, Wi = dWi, Wg = dWg, Wo = dWo, Wy = dWy,
                   bf = dbf, bi = dbi, bg = dbg, bo = dbo, by = dby)

    return dparams, dh_next, dc_next


def lstm_loss(params, h, c, inputs, targets):
    loss = 0
    outputs = []
    caches = []
    for inp, target in zip(inputs, targets):
        y, h, c, cache = lstm(params, inp, h, c)
        loss += np.mean((y - target) ** 2)
        outputs.append(y)
        caches.append(cache)
    loss = loss # / inputs.shape[0]
    return y, outputs, loss, h, c, caches

def dlstm_loss(params, inputs, targets, outputs, caches):
    h_shape = caches[0][-1].shape
    dparams = {k:np.zeros_like(v) for k, v in params.items()}
    dh = np.zeros(h_shape)
    dc = np.zeros(h_shape)

    for inp, out, target, cache in reversed(list(zip(inputs, outputs, targets, caches))):
        dy = 2 * (out - target)
        dps, dh, dc = dlstm(params, dy, dh, dc, cache)
        for dpk, dpv in dps.items():
            dparams[dpk] += dpv
    return  dparams


# ----------
# setup

x_n = 1
h_n = 5
o_n = 1

params = dict(
    Wf = np.random.normal(size=(x_n + h_n, h_n)),
    Wi = np.random.normal(size=(x_n + h_n, h_n)),
    Wg = np.random.normal(size=(x_n + h_n, h_n)),
    Wo = np.random.normal(size=(x_n + h_n, h_n)),
    Wy = np.random.normal(size=(h_n, o_n)),
    bf = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
    bi = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
    bg = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
    bo = np.zeros(h_n) + np.random.normal(size=h_n) * 0.1,
    by = np.zeros(o_n) + np.random.normal(size=o_n) * 0.1,
)

for name in ['Wf', 'Wi', 'Wg', 'Wo', 'Wy']:
    W = params[name]
    W *= np.sqrt(2 / (W.shape[0] + W.shape[1])) # Xavier initialization
for name in params:
    params[name] = params[name].astype('float64')


# ----------
# Sanity check, learn sin wave

def test_sin():
    emaloss = 1 # EMA average
    emak = 0.99

    for t in range(5000):
        data = np.sin(np.linspace(0, 3 * np.pi, 30))
        start = np.random.randint(0, data.size // 4)
        end = np.random.randint((data.size * 3) // 4, data.size)
        inputs = data[start:end, None]
        targets = np.roll(inputs, 1, axis=0)


        h_n = params['Wf'].shape[1] # TODO: h & c should be passed in
        h = np.random.normal(size=h_n)
        c = np.random.normal(size=h_n)

        y, outputs, loss, h, c, caches = lstm_loss(params, h, c, inputs, targets)
        dparams = dlstm_loss(params, inputs, targets, outputs, caches)

        for k in params.keys():
            params[k] -= dparams[k] * 0.01


        emaloss = emaloss * emak + loss * (1 - emak)
        if t % 100 == 0:
            print('%.4f' % emaloss)
test_sin()

# ----------
data = np.sin(np.linspace(0, 4 * np.pi, 90))
start = np.random.randint(0, data.size // 4)
end = np.random.randint((data.size * 3) // 4, data.size)
inputs = data[start:end, None]
targets = np.roll(inputs, 1, axis=0)

for inp, targ in zip(inputs, targets):
    assert(check_grad(params, inputs, targets, lstm_loss, dlstm_loss, delta=1e-5, tolerance=1e-7, num_checks=10))
print('grads are ok') # <- i never reach here
python machine-learning lstm recurrent-neural-network
2个回答
4
投票

解决它!在我check_grad,我需要建立以投放给caches,但这样做,我也覆盖df_analyticalh应该已经cnp.zeroes

y, outputs, loss, h, c, caches = f(params, h, c, inputs, targets)

_, _, loss_minus, _, _, _ = f(params, h, c, inputs, targets)
p.flat[pix] = old_val

所以,根本就没有覆盖hc修复它,和LSTM代码为a.o.k.

_, outputs, loss, _, _, caches = f(params, h, c, inputs, targets)

3
投票

我认为这个问题可能是这一行:

c = f_sigm * c_old + i_sigm * g_tanh
© www.soinside.com 2019 - 2024. All rights reserved.