如何在不同大小的图层上执行反向传播?

问题描述 投票:2回答:1

我正在使用众所周知的手写数字MNIST数据库开发第一个神经网络。我希望NN能够将给定图像的数字分类为0到9。

我的神经网络由三层组成:输入层(784个神经元,每个数字代表每个像素),隐藏层包含30个神经元(也可能是100或50个神经元,但是我不太担心超参数调整),输出层有10个神经元,每个神经元代表每个数字的激活。这给了我两个权重矩阵:一个是30x724,另一个是10x30。

我知道并理解反向传播,优化和其背后的数学公式的理论,这并不是问题。我可以优化第二个权重矩阵的权重,并且随着时间的推移,成本的确在降低。但是由于矩阵结构,我无法继续传播。

知道我已经找到了成本w.r.t.权重:

d(cost) / d(w) = d(cost) / d(f(z)) * d(f(z)) / d(z) * d(z) / d(w)

(是f激活函数,z点积加神经元的偏倚)

所以我在最右边的一层,有10个元素的输出数组。 d(cost) / d(f(z))是所观察到的预测值的减法。我可以将其乘以d(f(z)) / d(z),它只是最右边一层的f'(z),也是10个元素的一维向量,现在已经计算出d(cost) / d(z)。然后,d(z)/d(w)只是该层的输入,即上一层的输出,它是30个元素的向量。我认为可以对d(cost) / d(z)进行转置,以便T( d(cost) / d(z) ) * d(z) / d(w)给我一个(10,30)矩阵,这很有意义,因为它与最右边的权重矩阵的维数匹配。

但是后来我被卡住了。 d(cost) / d(f(z))的尺寸为(1,10),d(f(z)) / d(z)的尺寸为(1,30),而d(z) / d(w)的尺寸为(1,784)。我不知道该如何得出结果。

这是我到目前为止编写的代码。不完整的部分是_propagate_back方法。我还不在乎偏见,因为我只是执着于重量,首先我想弄清楚这一点。

import random
from typing import List, Tuple

import numpy as np
from matplotlib import pyplot as plt

import mnist_loader

np.random.seed(42)

NETWORK_LAYER_SIZES = [784, 30, 10]
LEARNING_RATE = 0.05
BATCH_SIZE = 20
NUMBER_OF_EPOCHS = 5000


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def sigmoid_der(x):
    return sigmoid(x) * (1 - sigmoid(x))


class Layer:

    def __init__(self, input_size: int, output_size: int):
        self.weights = np.random.uniform(-1, 1, [output_size, input_size])
        self.biases = np.random.uniform(-1, 1, [output_size])
        self.z = np.zeros(output_size)
        self.a = np.zeros(output_size)
        self.dz = np.zeros(output_size)

    def feed_forward(self, input_data: np.ndarray):
        input_data_t = np.atleast_2d(input_data).T
        dot_product = self.weights.dot(input_data_t).T[0]
        self.z = dot_product + self.biases
        self.a = sigmoid(self.z)
        self.dz = sigmoid_der(self.z)


class Network:

    def __init__(self, layer_sizes: List[int], X_train: np.ndarray, y_train: np.ndarray):
        self.layers = [
            Layer(input_size, output_size)
            for input_size, output_size
            in zip(layer_sizes[0:], layer_sizes[1:])
        ]
        self.X_train = X_train
        self.y_train = y_train

    @property
    def predicted(self) -> np.ndarray:
        return self.layers[-1].a

    def _normalize_y(self, y: int) -> np.ndarray:
        output_layer_size = len(self.predicted)
        normalized_y = np.zeros(output_layer_size)
        normalized_y[y] = 1.

        return normalized_y

    def _calculate_cost(self, y_observed: np.ndarray) -> int:
        y_observed = self._normalize_y(y_observed)
        y_predicted = self.layers[-1].a

        squared_difference = (y_predicted - y_observed) ** 2

        return np.sum(squared_difference)

    def _get_training_batches(self, X_train: np.ndarray, y_train: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        train_batch_indexes = random.sample(range(len(X_train)), BATCH_SIZE)

        return X_train[train_batch_indexes], y_train[train_batch_indexes]

    def _feed_forward(self, input_data: np.ndarray):
        for layer in self.layers:
            layer.feed_forward(input_data)
            input_data = layer.a

    def _propagate_back(self, X: np.ndarray, y_observed: int):
        """
        der(cost) / der(weight) = der(cost) / der(predicted) * der(predicted) / der(z) * der(z) / der(weight)
        """
        y_observed = self._normalize_y(y_observed)
        d_cost_d_pred = self.predicted - y_observed

        hidden_layer = self.layers[0]
        output_layer = self.layers[1]

        # Output layer weights
        d_pred_d_z = output_layer.dz
        d_z_d_weight = hidden_layer.a  # Input to the current layer, i.e. the output from the previous one

        d_cost_d_z = d_cost_d_pred * d_pred_d_z
        d_cost_d_weight = np.atleast_2d(d_cost_d_z).T * np.atleast_2d(d_z_d_weight)

        output_layer.weights -= LEARNING_RATE * d_cost_d_weight

        # Hidden layer weights
        d_pred_d_z = hidden_layer.dz
        d_z_d_weight = X

        # ...

    def train(self, X_train: np.ndarray, y_train: np.ndarray):
        X_train_batch, y_train_batch = self._get_training_batches(X_train, y_train)
        cost_over_epoch = []

        for epoch_number in range(NUMBER_OF_EPOCHS):
            X_train_batch, y_train_batch = self._get_training_batches(X_train, y_train)

            cost = 0
            for X_sample, y_observed in zip(X_train_batch, y_train_batch):
                self._feed_forward(X_sample)
                cost += self._calculate_cost(y_observed)
                self._propagate_back(X_sample, y_observed)

            cost_over_epoch.append(cost / BATCH_SIZE)

        plt.plot(cost_over_epoch)
        plt.ylabel('Cost')
        plt.xlabel('Epoch')
        plt.savefig('cost_over_epoch.png')


training_data, validation_data, test_data = mnist_loader.load_data()
X_train, y_train = training_data[0], training_data[1]

network = Network(NETWORK_LAYER_SIZES, training_data[0], training_data[1])
network.train(X_train, y_train)

这是mnist_loader的代码,以防有人想重现该示例:

import pickle
import gzip


def load_data():
    f = gzip.open('data/mnist.pkl.gz', 'rb')
    training_data, validation_data, test_data = pickle.load(f, encoding='latin-1')
    f.close()

    return training_data, validation_data, test_data
python numpy machine-learning neural-network backpropagation
1个回答
1
投票

[一旦有了d(cost) / d(z),我认为您实际上应该将其乘以权重矩阵:只有这样,您才能将误差d(cost) / d(z)移回新层(并获得有意义的矩阵形状)。

这是我如何更改后向传递功能:

def _propagate_back(self, X: np.ndarray, y_observed: int):
    """
    der(cost) / der(weight) = der(cost) / der(predicted) * der(predicted) / der(z) * der(z) / der(weight)
    """
    y_observed = self._normalize_y(y_observed)
    d_cost_d_pred = self.predicted - y_observed

    hidden_layer = self.layers[0]
    output_layer = self.layers[1]

    # Output layer weights
    d_pred_d_z = output_layer.dz
    d_z_d_weight = np.atleast_2d(hidden_layer.a)  # Input to the current layer, i.e. the output from the previous one

    d_cost_d_z = np.atleast_2d(d_cost_d_pred * d_pred_d_z)
    d_cost_d_weight = np.dot(d_cost_d_z.T, d_z_d_weight)

    output_layer.weights -= LEARNING_RATE * d_cost_d_weight

    # Hidden layer weights
    d_pred_d_z = hidden_layer.dz
    d_z_d_weight = np.atleast_2d(X)

    hidden_err = np.dot(d_cost_d_z, output_layer.weights)
    d_cost_d_z = np.atleast_2d(hidden_err * d_pred_d_z)
    d_cost_d_weight = np.dot(d_cost_d_z.T, d_z_d_weight)

    hidden_layer.weights -= LEARNING_RATE * d_cost_d_weight

两个注释:

  • [C0行是我将hidden_err = np.dot(d_cost_d_z, output_layer.weights)乘以权重矩阵的位置
  • 我已将d(cost) / d(z)运算符(在Numpy中为Hadamard积,如果我是对的,则替换为*函数的应用(在Numpy中为矩阵乘法)的出现]

我不是专家,所以我希望我不会犯一些可怕的错误……无论如何,我的回答主要基于Michael Nielsen的神经网络和深度学习np.dot

© www.soinside.com 2019 - 2024. All rights reserved.